用户名: 密码: 验证码:
气候变化对孑遗植物银杉的潜在分布及生境破碎度的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of climate change on the potential distribution and habitat fragmentation of the relict plant Cathaya argyrophylla Chun et Kuang
  • 作者:冉巧 ; 卫海燕 ; 赵泽芳 ; 张权中 ; 刘静 ; 顾蔚
  • 英文作者:RAN Qiao;WEI Haiyan;ZHAO Zefang;ZHANG Quanzhong;LIU Jing;GU Wei;School of Geography and Tourism, Shaanxi Normal University;National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University;College of Life Sciences, Shaanxi Normal University;
  • 关键词:气候变化 ; 孑遗植物 ; 景观指数 ; 生境破碎化 ; 银杉
  • 英文关键词:climate change;;relict plant;;landscape indices;;habitat fragmentation;;Cathaya argyrophylla Chun et Kuang
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:陕西师范大学地理科学与旅游学院;陕西师范大学西北濒危药材资源开发国家工程实验室;陕西师范大学生命科学学院;
  • 出版日期:2019-01-10 09:10
  • 出版单位:生态学报
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金项目(31070293);; 陕西省科学技术研究发展计划项目(2014K-01-02)
  • 语种:中文;
  • 页:219-231
  • 页数:13
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:Q948
摘要
以孑遗植物银杉(Cathaya argyrophylla Chun et Kuang)为研究对象,选取65个地理分布记录和19个生物气候因子(bio1—bio19),利用MaxEnt模型预测四种不同浓度路径下(RCP 2.6、RCP 4.5、RCP 6.0和RCP 8.5),银杉在2050s和2070s两个年代的潜在分布变化,并利用景观指数对气候变化情景下银杉适宜生境空间格局特征转变及生境破碎度变化进行分析。结果表明:在当前气候情景下,银杉适宜生境面积约占研究区面积的14.32%,主要分布于北纬24°—32°、东经105°—114°之间,位于四川盆地东南地区、云贵高原东北地区、南岭西段地区以及浙闽丘陵的北部地区。在未来不同气候情景下,银杉适宜生境变化特征显著,面积呈增加趋势,形状上整体呈四周向中间聚集。气候变化对银杉适宜生境的景观指数影响主要表现在斑块数量增多、斑块密度增加、面积加权平均形状指数变大,对分离度与聚散性影响较小;气候变化对银杉生境破碎化程度的影响表现在破碎化两极现象减弱,总体破碎化程度加剧。研究选取7个景观指数并结合PCA法得到综合的破碎度指数来定量分析银杉适宜生境破碎化程度变化,相比单一指标的定量评价和多个指标的定性分析,更能代表银杉生境的实际破碎化程度。
        In this study, using Cathaya argyrophylla Chun et Kuang based on 65 current geographical distribution records, and 19 bioclimatic factors based on maximum entropy models(MaxEnt), we estimated the transformation of the potential geographic distribution and habitat fragmentation of C. argyrophylla for the 2050 s and 2070 s under the climate change scenarios of RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 emission scenarios. The results showed that in the current climate conditions, the suitable habitat area of C. argyrophylla accounted for about 14.32% of the research area, and was mainly distributed at 24°—32°N and 105°—114°E, located Southeast of the Sichuan Basin, Northeast of the Yunnan-Guizhou Plateau, West of Nanling, and North of the Zhejiang-Fujian hilly region. Under the future climate scenarios, the characteristics of suitable habitat change of C. argyrophylla were obvious, and mainly manifested in increased suitable habitat areas and aggregations. Results of the landscape index and habitat fragmentation of suitable habitat for C. argyrophylla showed that climate change would lead to increased patches, patch density, and area weighted mean shape index, with less influence on the landscape division and aggregation indexes. Simultaneously, the effect of climate change on habitat fragmentation of C. argyrophylla mainly reflected on the weakening of the polarization phenomenon of habitat fragmentation, and higher overall fragmentation. In this research, seven indicators of the quantitative comprehensive analysis were more indicative than single indexes or multiple indicators of qualitative analysis, and were more representative of actual C. argyrophylla habitat fragmentation.
引文
[1] Stocker T F,Qin D,Plattner G K,Tignor M,Allen S K,Boschung J,Nauels A,Xia Y,Bex V,Midgley P M.Climate Change 2013:the Physical Science Basis,Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2013:1535- 1533.
    [2] IPCC.Climate Change 2014:Impacts,Adaptation,and Vulnerability.Summaries,Frequently Asked Questions,and Cross-Chapter Boxes//Field C B,Barros V R,Dokken D J,Mach K J,Mastrandrea M D,Bilir T E,Chatterjee M,Ebi K L,Estrada Y O,Genova R C,Girma B,Kisse E S,Levy A N,MacCracken S,Mastrandrea P R,White L L,eds.Climate Change 2014:Impacts,Adaptation,and Vulnerability Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Geneva:World Meteorological Organization,2014:190- 190.
    [3] CBD.Global Biodiversity Outlook 4:A Mid-Term Assessment of Progress Towards the Implementation of the Strategic Plan for Biodiversity 2011- 2020.Montréal,Canada:Secretariat of the Convention on Biological Diversity,2014.
    [4] Dawson T P,Jackson S T,House J I,Prentice I C,Mace G M.Beyond predictions:biodiversity conservation in a changing climate.Science,2011,332(6025):53- 58.
    [5] 姜彤,李修仓,巢清尘,袁佳双,林而达.《气候变化2014:影响、适应和脆弱性》的主要结论和新认知.气候变化研究进展,2014,10(3):157- 166.
    [6] Diversity S.Global Biodiversity Outlook 3.Global Biodiversity Outlook,2010,5(4):267- 284.
    [7] Williams J W,Jackson S T,Kutzbach J E.Projected distributions of novel and disappearing climates by 2100 AD.Proceedings of the National Academy of Sciences of the United States of America,2007,104(14):5738- 5742.
    [8] Jiménez-Alfaro B,Draper D,Nogués-Bravo D.Modeling the potential area of occupancy at fine resolution may reduce uncertainty in species range estimates.Biological Conservation,2012,147(1):190- 196.
    [9] Liu J G,Linderman M,Ouyang Z Y,An L,Yang J,Zhang H M.Ecological degradation in protected areas:the case of Wolong Nature Reserve for giant pandas.Science,2001,292(5514):98- 101.
    [10] 张镱锂,胡忠俊,祁威,吴雪,摆万奇,李兰晖,丁明军,刘林山,王兆锋,郑度.基于NPP数据和样区对比法的青藏高原自然保护区保护成效分析.地理学报,2015,70(7):1027- 1040.
    [11] 吴建国,王亮,杨永伟,代拴发,刘建泉,朱高.自然保护区还需面对气候变化挑战.环境保护,2011,(4):30- 32.
    [12] Austin,M P,Van Niel K P.Improving species distribution models for climate change studies:variable selection and scale.Journal of Biogeography,2011,38(1):1- 8.
    [13] 刘智方,唐立娜,邱全毅,肖黎姗,许通,杨丽.基于土地利用变化的福建省生境质量时空变化研究.生态学报,2017,37(13):4538- 4548.
    [14] 任芯雨,吕莹莹,巫颖伟,李明诗,李卫正.人工林与天然林破碎化过程差异对比——以美国华盛顿州和密西西比州为例.生态学报,2017,37(2):474- 484.
    [15] 赵光,邵国凡,郝占庆,吴文春.长白山森林景观破碎的遥感探测.生态学报,2001,21(9):1393- 1402.
    [16] 付刚,肖能文,乔梦萍,齐月,闫冰,刘高慧,高晓奇,李俊生.北京市近二十年景观破碎化格局的时空变化.生态学报,2017,37(8):2551- 2562.
    [17] 刘世梁,尹艺洁,杨珏婕,安南南,王聪,董世魁.漫湾库区景观破碎化对区域生境质量的影响.生态学报,2017,37(2):619- 627.
    [18] 赵泽芳,卫海燕,郭彦龙,顾蔚.人参潜在地理分布以及气候变化对其影响预测.应用生态学报,2016,27(11):3607- 3615.
    [19] Hernandez,P A,Franke I,Herzog S K,Pacheco V,Paniagua L,Quintana H L,Soto A,Swenson J J,Tovar C,Valqui T H,Vargas J,Young B E.Predicting species distributions in poorly-studied landscapes.Biodiversity and Conservation,2008,17(6):1353- 1366.
    [20] Elith J,Graham C H,Anderson R P,DudIk M,Ferrier S,Guisan A,Hijmans R J,Huettmann F,Leathwick J R,Lehmann A,Li J,Lohmann L G,Loiselle B A,Manion G,Moritz C,Nakamura M,Nakazawa Y,Overton J M,Peterson A T,Phillips S J,Richardson K,Scachetti-Pereira R,Schapire R E,Soberon J,Williams S,Wisz M S,Zimmermann N E,Araujo M.Novel methods improve prediction of species′ distributions from occurrence data.Ecography,2006,29(2):129- 151.
    [21] Faleiro F V,Machado R B,Loyola R D.Defining spatial conservation priorities in the face of land-use and climate change.Biological Conservation,2013,158:248- 257.
    [22] Bertrand R,Perez V,Gégout J C.Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change:the case of Quercus pubescens in France.Global Change Biology,2012,18(8):2648- 2660.
    [23] Gallagher R V,Hughe L,Leishman M R,Wilson P D.Predicted impact of exotic vines on an endangered ecological community under future climate change.Biological Invasions,2010,12(12):4049- 4063.
    [24] Lu C Y,Gu W,Dai A H,Wei H Y.Assessing habitat suitability based on geographic information system (GIS) and fuzzy:a case study of Schisandra sphenanthera,Rehd.et Wils.in Qinling Mountains,China.Ecological Modelling,2012,242:105- 115.
    [25] Guo Y L,Wei H Y,Lu C Y,Gao B,Gu W.Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change.PeerJ,2016,4(10):e2554.
    [26] Li X H,Tian H D,Wang Y,Li R Q,Song Z M,Zhang F C,Xu M,Li D M.Vulnerability of 208 endemic or endangered species in China to the effects of climate change.Regional Environmental Change,2013,13(4):843- 852.
    [27] 高蓓,卫海燕,郭彦龙,顾蔚.应用GIS和最大熵模型分析秦岭冷杉潜在地理分布.生态学杂志,2015,34(3):843- 852.
    [28] 傅立国,程树志.银杉的发现及命名.植物杂志,1981,(4):42- 43.
    [29] 谢宗强,陈伟烈,刘正宇,江明喜,黄汉东.银杉种群的空间分布格局.植物学报,1999,41(1):95- 101.
    [30] 谢宗强,陈伟烈,江明喜,黄汉东,朱日光.八面山银杉林种群的初步研究.植物学报,1995,37(1):58- 65.
    [31] 谢宗强,陈伟烈,路鹏,胡东.濒危植物银杉的种群统计与年龄结构.生态学报,1999,19(4):523- 528.
    [32] 祁承经,肖育檀.湖南省八面山银杉林的群落学分析.植物研究,1988,8(4):169- 182.
    [33] 苏乐怡,赵万义,张记军,杨玉鹏,郭远飞,凡强,廖文波.湖南八面山银杉群落特征及其残遗性和保守性分析.植物资源与环境学报,2016,25(4):76- 86.
    [34] 谢宗强,陈伟烈.濒危植物银杉的群落特征及其演替趋势.植物生态学报,1999,23(1):48- 55.
    [35] 张旺锋,樊大勇,谢宗强,蒋晓晖.濒危植物银杉幼树对生长光强的季节性光合响应.生物多样性,2005,13(5):387- 397.
    [36] 谢宗强,李庆梅.濒危植物银杉种子特性的研究.植物生态学报,2000,24(1):82- 86.
    [37] 汪小全,邹喻苹,张大明,洪德元,刘正宇.银杉遗传多样性的RAPD分析.中国科学(C辑),1996,26(5):436- 441.
    [38] 王红卫.银杉遗传多态性及其谱系地理//全国系统与进化植物学研讨会暨第九届系统与进化植物学青年研讨会论文摘要集.陕西:全国系统与进化植物学研讨会暨第九届系统与进化植物学青年研讨会,2006:83- 83.
    [39] 葛颂,王海群,张灿明,洪德元.八面山银杉林的遗传多样性和群体分化.植物学报,1997,39(3):266- 271.
    [40] Ranc N,Santini L,Rondinini C,Boitani L,Poitevin F,Angerbj?rn A,Maiorano L.Performance tradeoffs in target-group bias correction for species distribution models.Ecography,2017,40(9):1076- 1087.
    [41] Kumar P.Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using MaxEnt modelling:limitations and challenges.Biodiversity and Conservation,2012,21(5):1251- 1266.
    [42] 吴统文,宋连春,李伟平,王在志,张华,辛晓歌,张艳武,张莉,李江龙,吴方华,刘一鸣,张芳,史学丽,储敏,张洁,房永杰,汪方,路屹雄,刘向文,魏敏,刘茜霞,周文艳,董敏,赵其庚,季劲钧,Li L,周明煜.北京气候中心气候系统模式研发进展——在气候变化研究中的应用.气象学报,2014,72(1):12- 29.
    [43] Slater H,Michael E.Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling.PLoS One,2012,7(2):e32202.
    [44] Jackson C R,Robertson M P.Predicting the potential distribution of an endangered cryptic subterranean mammal from few occurrence records.Journal for Nature Conservation,2011,19(2):87- 94.
    [45] Wilcove D S,McLellan C H,Dobson A P.Habitat fragmentation in the temperate zone//Soul′e M E,ed.Conservation Biology:the Science of Scarcity and Diversity.Sunderland:Sinauer Associates,1986:237- 256.
    [46] 杨芳,贺达汉.生境破碎化对生物多样性的影响.生态科学,2006,25(6):564- 567.
    [47] Fahrig L.Effects of habitat fragmentation on biodiversity.Annual Review of Ecology,Evolution,and Systematics,2003,34:487- 515.
    [48] 邬建国.景观生态学——格局、过程、尺度与等级(第二版).北京:高等教育出版社,2007.
    [49] 李栋科,丁圣彦,梁国付,赵清贺,汤茜,孔令华.基于移动窗口法的豫西山地丘陵地区景观异质性分析.生态学报,2014,34(12):3414- 3424.
    [50] 张祖荣,唐建中.重庆金佛山野生银杉人工繁殖技术初步研究.四川林业科技,2004,25(3):56- 59.
    [51] 李林,魏识广,黄忠良,曹洪麟,莫德清.猫儿山两种孑遗植物的更新状况和空间分布格局分析.植物生态学报,2012,36(2):144- 150.
    [52] 姜大膀,富元海.2℃全球变暖背景下中国未来气候变化预估.大气科学,2012,36(2):234- 246.
    [53] 安静,刘鸯,王海娟,王丹丹,张霞,吴玲.破碎化生境中粗柄独尾草种群大小对繁殖特性的影响.生态学报,2018,38(6):2074- 2081.
    [54] 朱立敏.生境破碎化条件下太行山区蜘蛛群落结构研究[D].保定:河北大学,2008.
    [55] 肖烨.大熊猫生境适宜性评价和景观格局分析[D].南京:南京林业大学,2012.
    [56] Carlson A,Hartman G.Tropical forest fragmentation and nest predation-an experimental study in an Eastern Arc montane forest,Tanzania.Biodiversity & Conservation,2001,10(7):1077- 1085.
    [57] 巩杰,谢余初,高彦净,孙朋,钱大文.1963- 2009年金塔绿洲变化对绿洲景观格局的影响.生态学报,2015,35(3):603- 612.
    [58] 徐凯健,曾宏达,任婕,谢锦升,杨玉盛.亚热带典型红壤侵蚀区人类活动对植被覆盖度及景观格局的影响.生态学报,2016,36(21):6960- 6968.
    [59] 李帅,马文超,顾艳文,魏虹,彭月,李昌晓.宁夏黄河流域景观破碎化时空变化特征.生态学报,2016,36(11):3312- 3320.
    [60] 周盼.银杉种质资源的保护与利用探讨.现代农业科技,2009,(11):13- 13,15- 15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700