用户名: 密码: 验证码:
利用生物絮团技术对克氏原螯虾的养殖效果初探
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A preliminary study on the feeding effect of the red swamp crayfish(Procambarus clakii) using biofloc technology
  • 作者:李京昊 ; 成永旭 ; 王海锋 ; 黄锦 ; 申浩然 ; 陈焕根 ; 李嘉尧
  • 英文作者:LI Jinghao;CHENG Yongxu;WANG Haifeng;HUANG Jin;SHEN Haoran;CHEN Huangen;LI Jiayao;Key Laboratory of Freshwater Aquatic Genetic Resources,Ministry of Agriculture and Rural Affairs,National Demonstration Center for Experimental Fisheries Science Education,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University;Fisheries Technology Extension Center of Jiangsu Province;
  • 关键词:克氏原螯虾 ; 生物絮团技术 ; 生化组成 ; 消化酶 ; 抗氧化性
  • 英文关键词:Procambarus clarkia;;biofloc technology;;biochemical composition;;digestive enzyme;;antioxidative ability
  • 中文刊名:水产学报
  • 英文刊名:Journal of Fisheries of China
  • 机构:上海海洋大学农业农村部淡水水产种质资源重点实验室水产科学国家级实验教学示范中心上海水产养殖工程技术研究中心;江苏省渔业技术推广中心;
  • 出版日期:2018-09-07 16:32
  • 出版单位:水产学报
  • 年:2019
  • 期:04
  • 基金:上海市科委农业领域科技支撑项目(15391912100);; 江苏省渔业科技类项目(D2017-1-1);; 上海高校水产学高峰学科建设专项(2015-62-0908);; 内江市科技孵化和成果转化专项(2018KJFHO22)~~
  • 语种:中文;
  • 页:267-276
  • 页数:10
  • CN:31-1283/S
  • ISSN:1000-0615
  • 分类号:S966.12
摘要
为探究将生物絮团技术应用到克氏原螯虾养殖的可能性,本实验利用生物絮团技术和普通饲料投喂2种方式短期养殖体质量为(9.70±0.32) g的克氏原螯虾30 d。比较养殖期间2实验组的水化学指标以及实验结束时2实验组幼虾的生长情况,肌肉及肝胰腺营养成分组成,胃、肠和肝胰腺组织的消化酶活性,肝胰腺和肌肉组织的抗氧化能力。结果显示,①在养殖期间,絮团组水体总氮(TN)、亚硝态氮(NO 2?-N)、硝态氮(NO 3?-N)的质量浓度均维持在较低的水平。②本实验条件下2实验组虾的终末体质量、增重率(WG)、特定生长率(SGR)、存活率(SR)均无显著差异。③絮团的粗蛋白含量可以达到36.8%,能够满足克氏原螯虾对于蛋白的需求。但絮团的粗脂肪含量较低,这也影响了絮团组幼虾肌肉组织的粗脂肪沉积量。④絮团组幼虾肝胰腺中α-淀粉酶(α-AL)、脂肪酶(LPS)、纤维素酶(CL)活性均显著高于饲料组幼虾,而饲料组幼虾在胃、肠组织中的α-AL活性较高,2实验组幼虾的胃蛋白酶活性无明显差异。⑤絮团组幼虾的抗氧化能力与饲料组幼虾相比,肝胰腺中超氧化物歧化酶(SOD)活性较高,丙二醛(MDA)含量较低,但总抗氧化能力(T-AOC)、过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)以及溶菌酶(LZM)无明显差异。研究表明,生物絮团技术在克氏原螯虾的养殖中具有积极作用,可以达到与饲料投喂相同甚至更好的养殖效果。
        To investigate the possibility of feeding the red swamp crayfish(Procambarus clarkii) with biofloc technology, a 30-day short-term experiment was conducted to farm juveniles(9.70±0.32) g using biofloc technology and feeding normal diet. This experiment compared the hydrochemical indexes of two experimental groups during experimental period and compared the growth performance, muscle and hepatopancreas nutrient composition, the digestive enzyme activities in stomach, intestine, hepatopancreas tissues, the antioxidant capacity in hepatopancreas and muscle tissues of two groups' juveniles at the end of the experiment. The results showed that the concentration of total nitrogen(TN), nitrite nitrogen(NO 2?-N), nitrate nitrogen(NO 3?-N) of the biofloc group were all kept at a low level during experimental period. The final weight of the juvenile shrimps, the weight gain rate(WG), the specific growth rate(SGR) and survive rate(SR) showed no significant difference in the two experimental groups under this experiment condition. The content of crude protein of the biofloc was 36.8% which could meet the protein requirement of P. clarkii. However, the crude lipid content of biofloc was significantly lower and affected the crude lipid content of muscle from biofloc group juveniles. The α-amylase(α-AL), lipase(LPS) and cellulase(CL) activities in hepatopancreas of the biofloc group juveniles were significantly higher than that of the diet group juveniles, respectively, while α-AL activity in stomach and intestine was higher in the diet group. No significant difference was found in the pepsin activity between the two experimental groups. Comparing the antioxidant capacity of crayfish juveniles from the two experimental groups, the activity of superoxide dismutase(SOD) in hepatopancreas of juveniles from the biofloc group was significantly higher, and the content of malondialdehyde(MDA) was much lower than that from the diet group. No differences were found in the activities of total antioxidant capacity(T-AOC), catalase(CAT), glutathione reductase(GR) and lysozyme(LZM) in hepatopancreas of juveniles from two experimental groups. In conclusion, the biofloc technology had a positive effect on farming of the red swamp crayfish. And this technology could achieve the same or even better affect than the normal diet feeding.
引文
[1]田娟,许巧情,田罗,等.洞庭湖克氏原螯虾肌肉成分分析及品质特性分析[J].水生生物学报,2017,41(4):870-877.Tian J,Xu X Q,Tian L,et al.The muscle composition analysis and flesh quality of Procambarus clarkia in the Dongting lake[J].Acta Hydrobiologica Sinica,2017,41(4):870-877(in Chinese).
    [2]农业部渔业渔政管理局.中国渔业统计年鉴[M].北京:中国农业出版社,2017:24-25.Bureau of Fisheries,Ministry of Agriculture.China Fishery Statistical Yearbook[M].Beijing:China Agriculture Press,2016:24-25(in Chinese).
    [3]Crab R,Avnimelech Y,Defoirdt T,et al.Nitrogen removal techniques in aquaculture for a sustainable production[J].Aquaculture,2007,270(1-4):1-14.
    [4]刘文斌.克氏螯虾的营养需求研究及饲料应用展望[J].经济动物学报,2013,17(1):1-4,11.Liu W B.Nutritional requirement and compound feed application for red swamp crayfish(Procambarus clarkii)[J].Journal of Economic Animal,2013,17(1):1-4,11(in Chinese).
    [5]Avnimelech Y.Carbon/nitrogen ratio as a control element in aquaculture systems[J].Aquaculture,1999,176(3-4):227-235.
    [6]Azim M E,Little D C.The biofloc technology(BFT)in indoor tanks:water quality,biofloc composition,and growth and welfare of Nile tilapia(Oreochromis niloticus)[J].Aquaculture,2008,283(1-4):29-35.
    [7]Wang C,Pan L Q,Zhang K Q,et al.Effects of different carbon sources addition on nutrition composition and extracellular enzymes activity of bioflocs,and digestive enzymes activity and growth performance of Litopenaeus vannamei in zero-exchange culture tanks[J].Aquaculture Research,2016,47(10):3307-3318.
    [8]Asaduzzaman M,Wahab M A,Verdegem M C J,et al.C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds[J].Aquaculture,2008,280(1-4):117-123.
    [9]Hari B,Kurup B M,Varghese J T,et al.Effects of carbohydrate addition on production in extensive shrimp culture systems[J].Aquaculture,2004,241(1-4):179-194.
    [10]邓应能.不同养殖系统生物絮团调控模式研究[D].上海:上海海洋大学,2011.Deng Y N.Study on the controlling model of bio-floc in different culture systems[D].Shanghai:Shanghai Ocean University,2011(in Chinese).
    [11]AOAC.Official Methods of Analysis of the Association of Official Analytical Chemists[M].16th ed.Arlington:Association of Official Analytical Chemists,1995.
    [12]Folch J,Lees M,Sloane-Stanley G H.A simple method for the isolation and purification of total lipides from animal tissues[J].Journal of Biological Chemistry,1957,226(1):497-509.
    [13]Schneider O,Sereti V,Eding E H,et al.Analysis of nutrient flows in integrated intensive aquaculture systems[J].Aquacultural Engineering,2005,32(3-4):379-401.
    [14]Browdy C L,Ray A J,Leffler J W,et al.Biofloc-based Aquaculture Systems[M]//Tidwell J H.Aquaculture Production Systems.Ames,Iowa:Wiley-Blackwell,2012:278-307.
    [15]Wang G J,Yu E M,Xie J,et al.Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp,Carassius auratus[J].Aquaculture,2015,443:98-104.
    [16]于宁,朱站英,冯文和,等.克氏原螯虾饲料最适能量蛋白质比[J].动物营养学报,2014,26(4):1111-1119.Yu N,Zhu Z Y,Feng H W,et al.Optimum energyprotein ratios in diets of Procambrus clarkii[J].Chinese Journal of Animal Nutrition,2014,26(4):1111-1119(in Chinese).
    [17]Emerenciano M,Ballester E L C,Cavalli R O,et al.Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis(Latreille,1817)[J].Aquaculture Research,2012,43(3):447-457.
    [18]Yao C,Tan H X,Luo G Z,et al.Effects of temperature on inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge[J].North American Journal of Aquaculture,2013,75(4):463-467.
    [19]徐维娜,刘文斌,沈美芳,等.饲料中不同蛋白质和脂肪水平对克氏螯虾(Procambarus clarkii)生长性能、体组成和消化酶活性的影响[J].海洋与湖沼,2011,42(4):521-529.Xu W N,Liu W B,Shen M F,et al.Effect of different dietary protein and lipid level on growth performance,body composition and digestive enzymes activities of red swamp crayfish Procambarus clarkii[J].Oceanologia et Limnologia Sinica,2011,42(4):521-529(in Chinese).
    [20]Ju Z Y,Forster I,Conquest L,et al.Enhanced growth effects on shrimp(Litopenaeus vannamei)from inclusion of whole shrimp floc or floc fractions to a formulated diet[J].Aquaculture Nutrition,2008,14(6):533-543.
    [21]De Souza D M,Borges V D,Furtado P,et al.Antioxidant enzyme activities and immunological system analysis of Litopenaeus vannamei reared in biofloc technology(BFT)at different water temperatures[J].Aquaculture,2016,451:436-443.
    [22]Crab R,Defoirdt T,Bossier P,et al.Biofloc technology in aquaculture:beneficial effects and future challenges[J].Aquaculture,2012,356:351-356.
    [23]Moss S M,Divakaran S,Kim B G.Stimulating effects of pond water on digestive enzyme activity in the Pacific white shrimp,Litopenaeus vannamei(Boone)[J].Aquaculture Research,2001,32(2):125-131.
    [24]李强.克氏原螯虾对饲料中蛋白质与磷适宜需求量的研究[D].武汉:华中农业大学,2012.Li Q.Dietary protein and phosphorus requirement of red swamp crayfish,Procambarus clarkii[D].Wuhan:Huazhong Agricultural University,2012(in Chinese).
    [25]Zhang N,Luo G Z,Tan H X,et al.Growth,digestive enzyme activity and welfare of tilapia(Oreochromis niloticus)reared in a biofloc-based system with poly-β-hydroxybutyric as a carbon source[J].Aquaculture,2016,464:710-717.
    [26]Shao J C,Liu M,Wang B J,et al.Evaluation of biofloc meal as an ingredient in diets for white shrimp Litopenaeus vannamei under practical conditions:Effect on growth performance,digestive enzymes and TORsignaling pathway[J].Aquaculture,2017,479:516-521.
    [27]Cardona E,Lorgeoux B,Geffroy C,et al.Relative contribution of natural productivity and compound feed to tissue growth in blue shrimp(Litopenaeus stylirostris)reared in biofloc:assessment by C and N stable isotope ratios and effect on key digestive enzymes[J].Aquaculture,2015,448:288-297.
    [28]Wasielesky W J,Atwood H,Stokes A,et al.Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei[J].Aquaculture,2006,258(1-4):396-403.
    [29]Xu W J,Pan L Q.Effects of bioflocs on growth performance,digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed[J].Aquaculture,2012,356:147-152.
    [30]Jones D A,Kumlu M,Vay L L,et al.The digestive physiology of herbivorous,omnivorous and carnivorous crustacean larvae:a review[J].Aquaculture,1997,155(1-4):285-295.
    [31]杨其彬,李运东,江世贵,等.斑节对虾α-淀粉酶基因的克隆及其表达分析[J].水生生物学报,2017,41(6):1186-1192.Yang Q B,Li Y D,Jiang S G,et al.Cloning and expression analysis of alpha amylase cdna of Penaeus monodon[J].Acta Hydrobiologica Sinica,2017,41(6):1186-1192(in Chinese).
    [32]Krummenauer D,Poersch L,Romano L A,et al.The effect of probiotics in a Litopenaeus vannamei biofloc culture system infected with Vibrio parahaemolyticus[J].Journal of Applied Aquaculture,2014,26(4):370-379.
    [33]Ekasari J,Suprayudi M A,Wiyoto W,et al.Biofloc technology application in African catfish fingerling production:The effects on the reproductive performance of broodstock and the quality of eggs and larvae[J].Aquaculture,2016,464:349-356.
    [34]Zhao D H,Pan L Q,Huang F,et al.Effects of different carbon sources on bioactive compound production of biofloc,immune response,antioxidant level,and growth performance of Litopenaeus vannamei in zero-water exchange culture tanks[J].Journal of the World Aquaculture Society,2016,47(4):566-576.
    [35]Anand P S S,Kumar S,Kohli M P S,et al.Dietary biofloc supplementation in black tiger shrimp,Penaeus monodon:effects on immunity,antioxidant and metabolic enzyme activities[J].Aquaculture Research,2017,48(8):4512-4523.
    [36]Liu G,Zhu S M,Liu D Z,et al.Effects of stocking density of the white shrimp Litopenaeus vannamei(Boone)on immunities,antioxidant status,and resistance against Vibrio harveyi in a biofloc system[J].Fish&Shellfish Immunology,2017,67:19-26.
    [37]孔纯,华雪铭,杨璐,等.暗纹东方鲀饲料中豆粕替代鱼粉的营养生理效应及其与大豆抗原蛋白的相关性[J].水产学报,2017,41(5):734-745.Kong C,Hua X M,Yang L,et al.Nutritional physiological effects of soybean meal substituting for fish meal in the feed of obscure puffer(Takifugu fasciatus)and its relationship with soybean antigenic proteins[J].Journal of Fisheries of China,2017,41(5):734-745(in Chinese).
    [38]Xu W J,Pan L Q.Evaluation of dietary protein level on selected parameters of immune and antioxidant systems,and growth performance of juvenile Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks[J].Aquaculture,2014,426:181-188.
    [39]Ninawe A S,Selvin J.Probiotics in shrimp aquaculture:avenues and challenges[J].Critical Reviews in Microbiology,2009,35(1):43-66.
    [40]Cardona E,Gueguen Y,MagréK,et al.Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system[J].BMC Microbiology,2016,16:157.
    [41]Hu X J,Cao Y C,Wen G L,et al.Effect of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems[J].Aquaculture Research,2017,48(6):2691-2705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700