用户名: 密码: 验证码:
化工企业废水污染源在线监控预警阈值确定方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on On-Line Monitoring and Warning Threshold-Deciding Method for Wastewater Pollution Sources in Chemical Plants
  • 作者:曹伟 ; 秦延文 ; 张雷 ; 赵艳民 ; 马迎群 ; 杨晨晨
  • 英文作者:CAO Wei;QIN Yanwen;ZHANG Lei;ZHAO Yanmin;MA Yingqun;YANG Chenchen;Chinese Research Academy of Environmental Sciences;
  • 关键词:化工厂 ; 在线监控预警 ; 层次分析法 ; 频次分析法 ; 阈值范围
  • 英文关键词:chemical plant;;on-line monitoring and early warning;;analytic hierarchy process;;frequency analysis;;threshold range
  • 中文刊名:环境科学研究
  • 英文刊名:Research of Environmental Sciences
  • 机构:中国环境科学研究院;
  • 出版日期:2019-03-05 17:11
  • 出版单位:环境科学研究
  • 年:2019
  • 期:08
  • 基金:国家重点研发计划重点专项(No.2017YFC040470002-001)~~
  • 语种:中文;
  • 页:32-41
  • 页数:10
  • CN:11-1827/X
  • ISSN:1001-6929
  • 分类号:X84
摘要
为解决我国污染源在线监控数据缺乏深层次利用、监测数据对污染源不能有效预警的状况,对企业日常污水排放的污染物进行监控预警,综合运用层次分析法和频次分析法,分别确立了在线监控预警的指标体系和污水排放不同警情的阈值范围,并以某化工厂12个月的在线监测数据为案例对方法进行了验证.分析结果表明,某化工厂污染源废水中ρ(氰化物)在0~0. 50mgL之间,其中88. 54%的监控数据分布范围为0~0. 20 mgL,均未超过GB 8978—1996《污水综合排放标准》Ⅱ级标准限值;ρ(CODCr)在3. 51~499. 17 mgL之间,其中51. 74%的数据分布在>300~400 mgL之间,接近GB 8978—1996Ⅲ级标准限值,出水ρ(CODCr)偏高;ρ(NH_4+-N)在0~45 mgL之间,均未超过GB 8978—1996Ⅱ级标准限值,其中91. 13%的数据低于30 mgL,出水ρ(NH_4+-N)较低.对确定的预警阈值方法验证结果表明:①依据权重值的大小最终筛选出氰化物、CODCr及NH_4+-N为预警指标.②某化工厂氰化物在排放正常、一般、不正常及极不正常状态对应的阈值范围分别可设为40%频次、30%频次、5%频次及超过5%频次所对应的浓度范围; CODCr和NH_4+-N各状态对应阈值浓度范围一致,均为50%频次、40%频次、5%频次及超过5%频次对应的数值.研究显示,基于在线监测数据并结合相关标准、化工企业排污风险特征和化工厂的生产特征及工艺等基本条件,提出利用频次分析法确定化工厂各采样时刻不同警情阈值的方法较为科学合理.
        In view of the inadequate use of the monitoring data of pollution sources and the failure to early warn pollution accidents in China,monitoring and early warning of pollutants discharged from wastewater of enterprises were carried out. Using analytic hierarchy process and frequency analysis,the index system of online monitoring and early warning and the threshold range of different warning conditions for wastewater discharge were established respectively. The method was validated by a 12-month online monitoring data of a chemical plant. The data analysis results show that the concentration of cyanide in the wastewater of the chemical plant was between 0 and0. 50 mgL,of which 88. 54% of the data was distributed between 0 and 0. 20 mgL,which didn't exceed the level Ⅱ standard limit of Integrated Wastewater Discharge Standard(GB 8978-1996); The CODCrconcentration was between 3. 51 and 499. 17 mgL,of which51. 74% of the data was distributed between 300 and 400 mgL,which was close to the GB 8978-1996 Ⅲ standard limit,and the concentration were high; The ammonia nitrogen concentration was between 0 and 45 mgL,of which 91. 13% were less than 30 mgL,indicating that the ammonia nitrogen concentration in chemical plants was low. The results of validation of early warning threshold determination method show that:(1) The indexes with larger weights(cyanide,CODCrand NH_4-N) were selected to conduct the online monitoring and early warning.(2) The threshold of exceedance frequency for cyanide emissions could be set as 40%,30%,5% and above 5% for the normal,regular,abnormal and extremely abnormal status,and the threshold of exceedance frequency for CODCrand ammonia nitrogen emissions could be set as 50%,40%,5% and above 5% for the normal,regular,abnormal and extremely abnormal status in chemical plants. The research showed that the method for determining different warning thresholds at each sampling time in chemical plants by frequency analysis method,which based on the on-line monitoring data,combined with the relevant standards,the basic conditions of emission risk characteristics,production characteristics and process of chemical plants,made the determination of the threshold more reasonable and scientific,and it had certain reference value for the determination of early warning threshold of different industries in the future.
引文
[1]赵淑莉,韩小铮,秦承华,等.近年来我国环境污染事件浅析[J].环境与可持续发展,2012(3):64-68.ZHAO Shuli,HAN Xiaozheng,QIN Chenghua,et al. Analysis of environmental pollution incidents occurred in china in recent years[J].Environment and Sustainable Development,2012(3):64-68.
    [2] HU Bin,HU Bo,WAN Jizheng,et al.Safe river water:a ubiquitous and collaborative water quality monitoring solution[J]. Pervasive and Mobile Computing,2009,5(5):419-431.
    [3] Federal Emergency Management Agency. Guide for all-hazard emergency operations planning[R]. Washington DC:Federal Emergency Management Agency,1996:1-32.
    [4] GYRGY G P. The danube accident emergency warning system[J].Water Science and Technology,1999,40(10):27-33.
    [5] HOU Yu,ZHANG Tianzhu.Evaluation of major polluting accidents in China results and perspectives[J]. Journal of Hazardous Materials,2009,168(2/3):670-673.
    [6] GUPTA A K,SURESH I V,MISRA J,et al. Environmental risk mapping approach:risk minimization tool for development of industrial growth centres in developing countries[J]. Journal of Cleaner Production,2002,10(3):271-281.
    [7] PERLES-ROSELLO'M J,VIAS-MARTINEZ J M,ANDREONAVARRO B.Vulnerability of human environment to risk:case of groundwater contamination risk[J]. Environment International,2009,35(2):325-335.
    [8] QIN Jungang,HAN Shihui. Neurocognitive mechanisms underlying identification of environmental risks[J].Neuropsychologia,2009,47(2):397-405.
    [9] CHRYSOULAKIS N,ADAKTYLOU N,CARTALIS C. Detecting and monitoring plumes caused by major industrial accidents with JPLUME,a new software tool for low-resolution image analysis[J].Environmental Modelling&Software,2005,20(12):1486-1494.
    [10] HERNANDO M D,RODRIGUEZ A,VAQUERO J J,et al.Environmental risk assessment of emerging pollutants in water:approaches under horizontal and vertical EU legislation[J].Critical Reviews in Environmental Science and Technology,2011,41(7):699-731.
    [11] ANDERSEN H V,KJOLHOLT J,POLL C,et al.Environmental risk assessment of surface water and sediments in Copenhagen Harbor[J].Water Science and Technology,1998,37(6/7):263-272.
    [12] BURCHARD-LEVINE A,LIU Shuming,VINCE F,et al. A hybrid evolutionary data driven model for river water quality early warning[J].Journal of Environmental Management,2014,143:8-16.
    [13] STOREY M V,VANDER GAAG B,BURNS B P.Advances in online drinking water quality monitoring and early warning systems[J].Water Research,2011,45(2):741-747.
    [14] LI Weixin,ZHANG Yongchun,LIU Zhuang,et al. Outline for establishment of the Taihu-Lake Basin early warning system[J].Ecotoxicology,2009,18(6):768-771.
    [15] ZHAO Ying,NAN Jun,CUI Fuyi,et al. Water quality forecast through application of bp neural network at Yuqiao Reservoir[J].Journal of Zhejiang University Science A,2007,8(9):1482-1487.
    [16]吕宝华,崔双发,郑艳波,等.辽宁大伙房水库水质变化与安全预警[J].东北水利水电,2007,25(2):54-57.LV Baohua,CUI Shuangfa,ZHENG Yanbo,et al. Water quality variation and safe early warning in Dahuofang Reservoir[J]. Water Resources&Hydropower of Northeast China,2007,25(2):54-57.
    [17]姜伟,黄卫.集中式饮用水水源地环境监控预警体系构建[J].环境监控与预警,2010,2(6):5-7.JIANG Wei,HUANG Wei. Environmental monitoring and early warning system construction of centralized drinking water sources[J].Environmental Monitoring and Forewarning,2010,2(6):5-7.
    [18]邱亮.水源地水质在线预警系统的方案及应用[J].污染防治技术,2017,30(6):73-75.QIU Liang. Scheme and application of water quality online early warning system for water sources[J].Pollution Control Technology,2017,30(6):73-75.
    [19] LEVINE A B,LIU Shuming,VINCE F. Drinking water source contamination early warning system and modelling in China:a review[J]. International Journal of Environmental Pollution and Remediation,2012,1(1):13-19.
    [20] WANG Yonggui,ZHANG Wanshun,ENGEL B A,et al. A fast mobile early warning system for water quality emergency risk in Ungauged River basins[J]. Environmental Modelling&Software,2015,73:76-89.
    [21] WANG Yonggui,ENGEL B A,HUANG Panpan,et al,Accurately early warning to water quality pollutant risk by mobile model system with optimization technology[J]. Journal of Environmental Management,2018,208:122-133.
    [22] KUO Jantai, WANG Yingyi, LUNG Wuseng. A hybrid neuralegenetic algorithm for reservoir water quality management[J].Water Research,2006,40(7):1367-1376.
    [23]张艳军,秦延文,张云怀,等.三峡库区水环境风险评估与预警平台总体设计与应用[J].环境科学研究,2016,29(3):391-396ZHANG Yanjun,QIN Yanwen,ZHANG Yunhuai,et al. Overall design and implementation of a system for water environmental risk assessment and early warning in the Three Gorges Reservoir Region[J].Research of Environmental Sciences,2016,29(3):391-396.
    [24]张嘉治,张雷,郑丙辉,等.基于频次分析法的污水处理厂在线监测预警技术研究[J].中国环境科学,2012,32(10):1792-1798.ZHANG Jiazhi,ZHANG Lei,ZHENG Binghui,et al.Monitoring and early alarming technology of sewage treatment plant based on frequency analysis[J]. China Environmental Science,2012,32(10):1792-1798.
    [25]董文平,马涛,刘强,等.流域水环境风险评估进展及其调控研究[J].环境工程,2015,33(12):111-115.DONG Wenping,MA Tao,LIU Qiang,et al. Research on risk assessment and control of basin water environment[J].Environmental Engineering,2015,33(12):111-115.
    [26]郭向楠,张勇.2007—2008年中国城乡饮用水源突发污染事件统计及分析[J].安全与环境学报,2009,9(3):183-192.GUO Xiangnan,ZHANG Yong. Statistical analysis on the drinkingwater supply system pollution incidents in China during the period of 2007-2008[J].Journal of Safety and Environment,2009,9(3):183-192.
    [27]曾光明,卓利,钟政林,等.突发性水环境风险评价模型事故泄漏行为的模拟分析[J].中国环境科学,1998,18(5):403-406.ZENG Guangming,ZHUO Li,ZHONG Zhenglin,et al. Assessment model about the accident water environment risk-modeling of the toxicant accident leakage[J]. China Environmental Science,1998,18(5):403-406.
    [28]马中飞,许冬花,邹培根.邻水区域化工企业突发性水污染事故致因模式分析[J].工业安全与环保,2010,36(12):52-53.MA Zhongfei,XU Donghua,ZOU Peigen. Discussion on sudden water pollution accident-causing models of chemical enterprises in area nearby waters[J]. Industrial Safety and Environmental Protection,2010,36(12):52-53.
    [29]吕连宏,罗宏,路超君.沿江化工园突发水污染事故预警指标体系研究[J].工业安全与环保,2011,37(1):30-32.LV Lianhong,LUO Hong,LU Chaojun. Research on early warning system for sudden water pollution accident in chemical industry park along the Yangtze River[J]. Industrial Safety and Environmental Protection,2011,37(1):30-32.
    [30]李俊红,刘树枫,袁海林.浅谈环境预警指标体系的建立[J].西安建筑科技大学学报,2000,3(1):78-81.LI Junhong,LIU Shufeng,YUAN Hailin. Opinion on building the index of the environmental warning system[J]. Journal of Xi'an University of Architecture&Technology,2000,3(1):78-81.
    [31]刘潇,薛莹,纪毓鹏.基于主成分分析法的黄河口及其邻近水域水质评价[J].中国环境科学,2015,35(10):3187-3192.LIU Xiao,XUE Ying,JI Yupeng.An assessment of water quality in the Yellow River estuary and its adjacent waters based on principal component analysis[J]. China Environmental Science,2015,35(10):3187-3192.
    [32]吴梅,钱翌.灰关联分析法在水磨河水环境质量评价中的应用[J].安全与环境工程,2006,13(1):26-29.WU Mei,QIAN Yi. The application of grey associative analysis on water evaluation of Shuimo River[J]. Safety and Environmental Engineering,2006,13(1):26-29.
    [33]杨帆.突发性水污染事故预警指标筛选及体系构建研究[M].北京:北京林业大学,2009:8-9.
    [34]周荣义,张诺曦,周瑛.基于与重要性指标筛选的神经网络评价模型与应用[J].中国安全科学学报,2007,17(4):43-48.ZHOU Rongyi,ZHANG Nuoxi,ZHOU Ying.Assessment model and its application based on AHP and the sieving of important index[J].China Safety Science Journal,2007,17(4):43-48.
    [35]黄美群.层次分析法在地质灾害详细调查防治区划中的运用[J].世界有色金属,2018(21):187-189.HUANG Meiqun. Application of analytic hierarchy process in the division of detailed investigation and prevention of geological disasters[J].World Non-ferrous Metals,2018(21):187-189.
    [36]李键,杨玉楠,吴舜泽,等.水环境预警系统的研究进展[J].污染减排,2009,16(4):4-7.LI Jian,YANG Yunan,WU Shunze,et al. Research progress on water environment early warning system[J]. Pollution Reduction,2009,16(4):4-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700