用户名: 密码: 验证码:
磁性纳米材料的生物医学应用进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in Biomedical Applications of Magnetic Nanomaterials
  • 作者:唐倩倩 ; 张艺凡 ; 和媛 ; 彭明丽 ; 翟高红 ; 樊海明
  • 英文作者:TANG Qian-Qian;ZHANG Yi-Fan;HE Yuan;PENG Ming-Li;ZHAI Gao-Hong;FAN Hai-Ming;College of Chemistry and Materials Science, Northwest University;School of Chemical Engineering, Northwest University;
  • 关键词:医用磁性纳米材料 ; 磁共振成像造影剂 ; 磁热生物效应 ; 磁力生物效应 ; 纳米酶特性
  • 英文关键词:biomedical magnetic nanomaterials;;magnetic resonance imaging contrast agents;;magnetic hyperthermia biological effect;;magnetic hyperthermia biological effect;;nanozymes
  • 中文刊名:生物化学与生物物理进展
  • 英文刊名:Progress in Biochemistry and Biophysics
  • 机构:西北大学化学与材料科学学院;西北大学化工学院;
  • 出版日期:2019-04-25 14:12
  • 出版单位:生物化学与生物物理进展
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金(81571809,81771981,31400663,21376192,21303136);; 陕西省自然科学基金(2015JM2063,2017JM2031)资助项目~~
  • 语种:中文;
  • 页:26-41
  • 页数:16
  • CN:11-2161/Q
  • ISSN:1000-3282
  • 分类号:R318.08
摘要
以四氧化三铁为代表的医用磁性纳米材料具有独特的磁学性能、表面易功能化、良好的生物学相容性等特点,在纳米医学相关领域展现出巨大的应用前景,特别是近年来它作为可介导外场的智能材料,在材料设计和生物医学应用方面均取得了突破性的进展.鉴于此,本文围绕磁性氧化铁纳米材料的生物医学应用,着重介绍近年来其在磁共振影像探针、磁热和磁力效应的生物医学应用、诊疗一体化以及纳米酶催化等领域的研究进展,并对磁性纳米材料在生物医学领域未来的发展方向进行了展望.
        Ferroferric oxide,a respresentative of biomedical magnetic nanomaterials, have shown great potential in nanomedicine because of their unique size-dependent properties, easy surface functionalization and good biocompatibility. Recently, great progress in this field has been achieved in materials design and biomedical applications, especially, the iron oxide nanomaterials can be used as intelligent materials to mediate the external field. To highlight these achievements, here we discuss the biomedical applications of magnetic nanoparticles in magnetic resonance imaging contrast agents, magnetic hyperthermia and magnetic force controlled biological effect, magnetotheranostics and nanozymes. With the quick development in nanomedicine, magnetic nanoparticles-based diagnostics and therapeutics are believed to play vital roles in tackling major disease in the future.
引文
[1]Qiao R R,Yang C H,Gao M Y.Superparamagnetic iron oxide nanoparticles:from preparations to in vivo MRI applications.JMater Chem,2009,19(35):6274-6293
    [2]Jordan A,Scholz R,Wust P,et al.Endocytosis of dextran and silancoated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro.JMagn Magn Mater,1999,194(1):185-196
    [3]Kalambur V S,Han B,Hammer B E,et al.In vitro characterization of movement,heating and visualization of magnetic nanoparticles for biomedical applications.Nanotechnology,2005,16(8):1221-1233
    [4]Kim K S,Park J K.Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel.Lab on a Chip,2005,5(6):657-664
    [5]Lin Y,Ren J,Qu X.Catalytically active nanomaterials:a promising candidate for artificial enzymes.Acc chem Res,2014,47(4):1097-1105
    [6]Thorek D L J,Chen A K,Czupryna J,et al.Superparamagnetic iron oxide nanoparticle probes for molecular imaging.Ann Biomed Eng,2006,34(1):23-38
    [7]Jordan A,Wust P,F?hlin H,et al.Inductive heating of ferrimagnetic particles and magnetic fluids:physical evaluation of their potential for hyperthermia.Int J Hyperther,1993,9(1):51-68
    [8]Dobson J.Remote control of cellular behaviour with magnetic nanoparticles.Nat Nanotechnol,2018,3(3):139-143
    [9]Zhang X,Niu H,Pan Y,et al.Chitosan-coated octadecylfunctionalized magnetite nanoparticles:preparation and application in extraction of trace pollutants from environmental water samples.Anal Chem,2010,82(6):2363-2371
    [10]乔瑞瑞,贾巧娟,曾剑峰,等.磁性氧化铁纳米颗粒及其磁共振成像应用.生物物理学报,2011,27(4):272-288Qiao R R,Jia Q J,Zeng J F,et al.Acta Biophysica Sinica,2011,27(4):272-288
    [11]乔瑞瑞,曾剑峰,贾巧娟,等.磁性氧化铁纳米颗粒--通向肿瘤磁共振分子影像的重要基石.物理化学学报,2012,28(5):993-1011Qiao R R,Zeng J F,Jia Q J,et al.Acta Physico-Chimica Sinica,2012,28(5):993-1011
    [12]Yoo D,Lee J H,Shin T H,et al.Theranostic magnetic nanoparticles.Acc Chem Res,2011,44(10):863-874
    [13]Ho D,Sun X,Sun S.Monodisperse magnetic nanoparticles for theranostic applications.Acc Chem Res,2011,44(10):875-882
    [14]Tassa C,Shaw S Y,Weissleder R.Dextran-coated iron oxide nanoparticles:a versatile platform for targeted molecular imaging,molecular diagnostics,and therapy.Acc Chem Res,2011,44(10):842-852
    [15]高利增,阎锡蕴.纳米酶的发现与应用.Progress in Biochemistry and Biophysics,2013,40(10):892-902
    [16]Wei H,Wang E.Nanomaterials with enzyme-like characteristics(nanozymes):next-generation artificial enzymes.Chem Soc Rev,2013,42(14):6060-6093
    [17]Kim B H,Lee N,Kim H,et al.Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for highresolution T1magnetic resonance imaging contrast agents.J Am Chem Soc,2011,133(32):12624-12631
    [18]Zhang H,Li L,Liu X L,et al.Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1magnetic resonance imaging contrast agent.ACS nano,2017,11(4):3614-3631
    [19]Lee J H,Jang J,Choi J,et al.Exchange-coupled magnetic nanoparticles for efficient heat induction.Nat Nanotech,2011,6(7):418-422
    [20]Liu X L,Yang Y,Ng C T,et al.Magnetic vortex nanorings:a new class of hyperthermia agent for highly efficient in vivo regression of tumors.Adv Mater,2015,27(11):1939-1944
    [21]Tay A,Di Carlo D.Remote neural stimulation using magnetic nanoparticles.Curr Med Chem,2017,24(5):537-548
    [22]Manuchehrabadi N,Gao Z,Zhang J,et al.Improved tissue cryopreservation using inductive heating of magnetic nanoparticles.Sci Transl Med,2017,9(379):eaah4586
    [23]Kim J,Cho H R,Jeon H,et al.Continuous O2-evolving MnFe2O4nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer.J Am Chem Soc,2017,139(32):10992-10995
    [24]Na H B,Hyeon T.Nanostructured T1MRI contrast agents.J Mater Chem,2009,19(35):6267-6273
    [25]Zeng L,Ren W,Zheng J,et al.Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging.Phys Chem Chem Phys,2012,14(8):2631-2636
    [26]Penfield J G,Reilly Jr R F.What nephrologists need to know about gadolinium.Nat Rev Nephrol,2007,3(12):654-668
    [27]Taboada E,Rodríguez E,Roig A,et al.Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization.Evaluation as potential T1magnetic resonance imaging contrast agents for molecular imaging.Langmuir,2007,23(8):4583-4588
    [28]Tromsdorf U I,Bruns O T,Salmen S C,et al.A highly effective,nontoxic T1MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles.Nano Lett,2009,9(12):4434-4440
    [29]Wei H,Bruns O T,Kaul M G,et al.Exceedingly small iron oxide nanoparticles as positive MRI contrast agents.Proc Natl Acad Sci USA,2017:144(9):2325-2330
    [30]Shen Z,Chen T,Ma X,et al.Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy.ACS nano,2017,11(11):10992-11004
    [31]Shen Z,Song J,Zhou Z,et al.Dotted core-shell nanoparticles for T1‐weightedMRIoftumors.Adv Mater,2018,30(33):1803163
    [32]Lu Y,Xu Y J,Zhang G,et al.Iron oxide nanoclusters for T1magnetic resonance imaging of non-human primates.Nat Biomed Eng,2017,1(8):637-643
    [33]Li Z,Yi P W,Sun Q,et al.Ultrasmall water‐soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents.Adv Funct Mater,2012,22(11):2387-2393
    [34]Zeng J,Jing L,Hou Y,et al.Anchoring group effects of surface ligands on magnetic properties of Fe3O4nanoparticles:towards high performance MRI contrast agents.Adv Mater,2014,26(17):2694-2698
    [35]Lu J,Sun J,Li F,et al.Highly sensitive diagnosis of small hepatocellular carcinoma using pH-responsive iron oxide nanocluster assemblies.JACS,2018,140(32):10071-10074
    [36]Bai C,Jia Z,Song L,et al.Time‐dependent T1-T2switchable magnetic resonance imaging realized by c(RGDyK)modified ultrasmall Fe3O4nanoprobes.Adv Funct Mater,2018,28(32):1802281
    [37]Shin T H,Choi Y,Kim S,et al.Recent advances in magnetic nanoparticle-based multi-modal imaging.Chem Soc Rev,2015,44(14):4501-4516
    [38]Jiang X,Zhang S,Ren F,et al.Ultrasmall magnetic CuFeSe2ternary nanocrystals for multimodal imaging guided photothermal therapy of cancer.ACS Nano,2017,11(6):5633-5645
    [39]Gao Z,Hou Y,Zeng J,et al.Tumor Microenvironment‐triggered aggregation of antiphagocytosis 99mTc‐labeled Fe3O4nanoprobes for enhanced tumor imaging in vivo.Adv Mater,2017,29(24):1701095
    [40]Cheng L,Yang K,Li Y,et al.Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual‐targeted photothermal therapy.Angew Chem,2011,123(32):7523-7528
    [41]Liu Y,Yang F,Yuan C,et al.Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics.ACS Nano,2017,11(2):1509-1519
    [42]Ferguson R M,Khandhar A P,Krishnan K M.Tracer design for magnetic particle imaging.JAppl Phys,2012,111(7):07B318
    [43]吴建鹏,刘晓丽,张欢,等.涡旋磁纳米颗粒.生物化学与生物物理进展,2015,42(7):593-605Wu J P,Liu X L,Zhang H,et al.Prog Biochem Biophys,,2015,42(7):593-605
    [44]Gordon R T,Hines J R,Gordon D.Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations.Med Hypotheses,1979,5(1):83-102
    [45]Yanase M,Shinkai M,Honda H,et al.Intracellular hyperthermia for cancer using magnetite cationic liposomes:an in vivo study.Cancer Res,1998,89(4):463-470
    [46]Shinjo T,Okuno T,Hassdorf R,et al.Magnetic vortex core observation in circular dots of permalloy.Science,2000,289(5481):930-932
    [47]Rothman J,Kl?ui M,Lopez-Diaz L,et al.Observation of a bidomain state and nucleation free switching in mesoscopic ring magnets.Phys Rev Lett,2001,86(6):1098-1101
    [48]Zhang Y F,Liu X,Peng E W,et al.Facile synthesis of waterdispersible magnetite nanorings from surfactant-free hematite nanorings.Micro&Nano Letters,2016,11(12):814-818
    [49]Jang J T,Nah H,Lee J H,et al.Critical enhancements of MRIcontrast and hyperthermic effects by dopant-controlled magnetic nanoparticles.Angew Chem-Int Edit,2009,48(7):1234-1238
    [50]Chen R,Christiansen M G,Anikeeva P.Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization.Acs Nano,2013,7(10):8990-9000
    [51]Jang J,Lee J,Seon J,et al.Giant magnetic heat induction of magnesium‐dopedγ‐Fe2O3superparamagnetic nanoparticles for completely killing tumors.Adv Mater,2018,30(6):1704362
    [52]Hildebrandt B,Wust P,Ahlers O,et al.The cellular and molecular basis of hyperthermia.Critical reviews in oncology/hematology,2002,43(1):33-56
    [53]BabincováM,AltanerováV,Altaner Cí,et al.In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia.IEEETransactions on Nanobioscience,2008,7(1):15-19
    [54]Ren Y,Zhang H,Chen B,et al.Multifunctional magnetic Fe3O4nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance.International Journal of Nanomedicine,2012,7(1):2261-2269
    [55]Xue W M,Liu X L,Ma H P,et al.AMF responsive DOX-loaded magnetic microspheres:transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer.J Mater Chem B,2018,6(15):2289-2303
    [56]Johannsen M,Thiesen B,Gneveckow U,et al.Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer.The Prostate,2006,66(1):97-104
    [57]Maier-Hauff K,Ulrich F,Nestler D,et al.Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme.J Neuro-oncol,2011,103(2):317-324
    [58]Espinosa A,Di Corato R,Kolosnjaj-Tabi J,et al.Duality of iron oxide nanoparticles in cancer therapy:amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment.ACS Nano,2016,10(2):2436-2446
    [59]Kumar C S S R,Mohammad F.Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery.Adv Drug Delivery Rev,2011,63(9):789-808
    [60]N'Guyen T T T,Duong H T T,Basuki J,et al.Functional iron oxide magnetic nanoparticles with hyperthermia‐induced drug release ability by using a combination of orthogonal click reactions.Angew Chem Int Ed,2013,52(52):14152-14156
    [61]Li J,Qu Y,Ren J,et al.Magnetocaloric effect in magnetothermallyresponsive nanocarriers for hyperthermia-triggered drug release.Nanotechnology,2012,23(50):505-706
    [62]Tabatabaei S N,Girouard H,CarretAS,et al.Remote control of the permeability of the blood-brain barrier by magnetic heating of nanoparticles:a proof of concept for brain drug delivery.J Control Release,2015,206:49-57
    [63]Montell C.The TRP Superfamily of cation channels.Sciences Signaling,2005,2005(272):re3-re3
    [64]Huang H,Delikanli S,Zeng H,et al.Remote control of ion channels and neurons through magnetic-field heating of nanoparticles.Nat Nanotech,2010,5(8):602-606
    [65]Stanley S A,Gagner J E,Damanpour S,et al.Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice.Science,2012,336(6081):604-609
    [66]Stanley S A,Sauer J,Kane R S,et al.Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles.Nat Med,2015,21(1):92-102
    [67]Stanley S A,Kelly L,Latcha K N,et al.Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism.Nature,2016,531(7596):647-650
    [68]Chen R,Romero G,Christiansen M G,et al.Wireless magnetothermal deep brain stimulation.Science,2015,347(6229):1477-1480
    [69]Munshi R,Qadri S M,Zhang Q,et al.Magneto-thermal genetic deep brain stimulation of motor behaviors in awake,freely moving mice.e Life,2017,6:e27069
    [70]Lewis J K,Bischof J C,Braslavsky I,et al.The grand challenges of organ banking:proceedings from the first global summit on complex tissue cryopreservation.Cryobiology,2016,72(2):169-182
    [71]Etheridge M L,Xu Y,Rott L,et al.RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials.Technology,2014,2(03):229-242
    [72]Wu C,Shen Y,Chen M,et al.Recent Advances in magnetic‐nanomaterial‐based mechanotransduction for cell fate regulation.Adv Mater,2018,30(17):1705673
    [73]Tay A,Kunze A,Murray C,et al.Induction of calcium influx in cortical neural networks by nanomagnetic forces.ACS Nano,2016,10(2):2331-2341
    [74]Kang H,Wong D S H,Yan X,et al.Remote control of multimodal nanoscale ligand oscillations regulates stem cell adhesion and differentiation.ACS Nano,2017,11(10):9636-9649
    [75]Kilinc D,Dennis C L,Lee G U.Bio‐Nano‐Magnetic materials for localized mechanochemical stimulation of cell growth and death.Adv Mater,2016,28(27):5672-5680
    [76]Franze K.The mechanical control of nervous system development.Development,2013,140(15):3069-3077
    [77]Kilinc D,Lesniak A,Rashdan S A,et al.Mechanochemical stimulation of MCF7 cells with rod‐shaped Fe-Au Janus particles induces cell death through paradoxical hyperactivation of ERK.Adv Healthc Mater,2015,4(3):395-404
    [78]Cheng D,Li X,Zhang G,et al.Morphological effect of oscillating magnetic nanoparticles in killing tumor cells.Nano Res Lett,2014,9(1):195-203
    [79]Lim E K,Kim T,Paik S,et al.Nanomaterials for theranostics:recent advances and future challenges.Chem Rev,2014,115(1):327-394
    [80]Chen H,Zhang W,Zhu G,et al.Rethinking cancer nanotheranostics.Nat Rev Mater,2017,2(7):17024-17042
    [81]Xie J,Lee S,Chen X.Nanoparticle-based theranostic agents.Adv Drug Delivery Rev,2010,62(11):1064-1079
    [82]Hayashi K,Nakamura M,Sakamoto W,et al.Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment.Theranostics,2013,3(6):366-376
    [83]Yoo D,Lee J H,Shin T H,et al.Theranostic magnetic nanoparticles.Acc Chem Res,2011,44(10):863-874
    [84]Sanson C,Diou O,Thevenot J,et al.Doxorubicin loaded magnetic polymersomes:theranostic nanocarriers for MR imaging and magneto-chemotherapy.ACS Nano,2011,5(2):1122-1140
    [85]Liu X L,Ng C T,Chandrasekharan P,et al.Synthesis of ferromagnetic Fe0.6Mn0.4O4nanoflowers as a new class of magnetic theranostic platform for in vivo T1‐T2dual‐mode magnetic resonance imaging and magnetic hyperthermia therapy.Adv Healthc Mater,2016,5(16):2092-2104
    [86]Song X,Gong H,Yin S,et al.Ultra‐small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy.Adv Funct Mater,2014,24(9):1194-1201
    [87]Shen Z,Chen T,Ma X,et al.Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy.ACS Nano,2017,11(11):10992-11004
    [88]Gao L,Zhuang J,Nie L,et al.Intrinsic peroxidase-like activity of ferromagnetic nanoparticles.Nat Nanotech,2007,2(9):577-583
    [89]Fan H M,Yi J B,Yang Y,et al.Single-crystalline MFe2O4nanotubes/nanorings synthesized by thermal transformation process for biological applications.Acs Nano,2009,3(9):2798-2808
    [90]Fan K,Cao C,Pan Y,et al.Magnetoferritin nanoparticles for targeting and visualizing tumour tissues.Nat Nanotech,2012,7(7):459-464
    [91]Wang H,Li S,Si Y,et al.Recyclable enzyme mimic of cubic Fe3O4nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis.J Mater Chem B,2014,2(28):4442-4448
    [92]Luo S,Liu Y,Rao H,et al.Fluorescence and magnetic nanocomposite Fe3O4@SiO2@Au MNPs as peroxidase mimetics for glucose detection.Anal Biochem,2017,538(9):26-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700