用户名: 密码: 验证码:
轮作草地土壤碳蓄积与矿化动态特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Characteristics of Soil Carbon Accumulation and Mineralization in Rotational Pasture
  • 作者:林栋 ; 张德罡 ; Rebecca ; L.McCulley ; 周生伟
  • 英文作者:LIN Dong;ZHANG De-gang;Rebecca L.McCulley;ZHOU Sheng-wei;College of Grassland Science,Gansu Agricultural University;Department of Plant and Soil Sciences,University of Kentucky;College of Science,Gansu Agricultural University;
  • 关键词:碳蓄积 ; 颗粒有机碳 ; 碳矿化 ; 轮作草地
  • 英文关键词:Carbon accumulation;;Particulate organic carbon;;Carbon mineralization;;Rotational pasture
  • 中文刊名:草地学报
  • 英文刊名:Acta Agrestia Sinica
  • 机构:甘肃农业大学草业学院;美国肯塔基大学植物与土壤科学系;甘肃农业大学理学院;
  • 出版日期:2019-07-15
  • 出版单位:草地学报
  • 年:2019
  • 期:04
  • 基金:科技部重点研发项目(2016YFC0501900);; 美国农业部食品与农业孵化项目(1010357);; 甘肃省高校科研项目(2016A-031)资助
  • 语种:中文;
  • 页:252-258
  • 页数:7
  • CN:11-3362/S
  • ISSN:1007-0435
  • 分类号:S812.2
摘要
为探明作物-草地轮作系统中草地土壤碳(Carbon,C)蓄积与矿化动态特征,本试验以温带气候区有机农牧场低投入蔬菜生产后的5年草地轮作土壤为研究对象,测定不同轮作年限和季节土壤有机碳(Soil Organic Carbon,SOC)及其颗粒有机碳(Particulate Organic Carbon,POC)和非颗粒有机碳(non-Particulate Organic Carbon,n-POC)组分含量,并对土壤C矿化潜力进行分析。结果表明,草地轮作年限显著影响SOC含量(P<0.01),季节对草地SOC含量无显著影响;SOC含量从草地建植初期的17.31g·kg~(-1)增加到第5年的20.88g·kg~(-1),且接近永久性草地SOC含量;POC敏感指示土壤有机C库变化动态,草地生长年限显著影响土壤POC和n-POC组分变化(P<0.01),草地建植5年POC含量增加了53.5%,n-POC含量增加17.6%,春季草地土壤n-POC含量显著高于夏季和冬季;草地轮作4年后土壤C矿化率显著升高,并接近永久性草地水平;秋季草地土壤在71d的培养期内平均C矿化速率为5.9μg·g~(-1)·d~(-1),显著低于其他季节。草地轮作增强了土壤C矿化潜力,提高了土壤C循环强度和有机C有效性,同时延长了SOC半衰期,对增加土壤C库容量和稳定性具有重要作用。
        In order to explore the dynamic characteristics of soil carbon(C)accumulation and mineralization in crop-pasture rotation system,the changes of soil organic carbon(SOC),particulate organic C(POC)and non-particulate organic C(n-POC)concentrations and the potential soil C mineralization(CM)in a fiveyear vegetable-pasture rotational agroecosystem in a low-input organic farm in temperate climate area were studied.The results showed that pasture rotational year significantly affected SOC content(P<0.01),but season did not.SOC content increased over 5 years in pasture rotation from 17.31 to 20.88g kg~(-1) soil,and was close to that in the permanent pasture.POC content sensitively indicated the change of SOC pool.Time for pasture growing significantly affected SOC fractions(P<0.01),and POC and n-POC increased by 53.5% and 17.6% after 5years pasture growing.Season did not affect SOC and POC contents.However,n-POC content was significantly affected by season,and it was 18% higher in spring than summer and winter.The soil CM rate significantly increased after 4-year rotation and was close to the average level of permanent pasture.The average soil CM rate in autumn was 5.9μg·g~(-1)·d~(-1) in 71-day incubation period,which was significantly lower than those in other seasons.Because the pasture rotation enhanced soil CM potential,promoted C cycling rate and SOC availability,and delayed half-life time of SOC,it played an important role in the capacity increasing and stabilization of soil C pool.
引文
[1]Xu G H,Ge Q S,Gong P,et al.Societal response to challenges of global change and human sustainable development[J].Chinese Science Bulletin,2013,58(25):3161-3168
    [2]IPCC.Climate change 2014:mitigation of climate change[R].Cambridge and New York:Cambridge University Press,2014
    [3]Lal R.Global potential of soil carbon sequestration to mitigate the greenhouse effect[J].Critical Reviews in Plant Sciences,2003,22(2):151-184
    [4]Carvalho J L N,Raucci G S,Fraz2o L A,et al.Crop-pasture rotation:A strategy to reduce soil greenhouse gas emissions in the Brazilian Cerrado[J].Agriculture,Ecosystems and Environment,2014,183:167-175
    [5]Watson R T,Noble I R,Bolin B,et al.IPCC special report:land use,land-use change,and forestry[R].Cambridge,UK:Cambridge University Press,2000
    [6]Campbell C A,Janzen H H,Paustian K,et al.Carbon storage in soils of the North American Great Plains:effect of cropping frequency[J].Agronomy Journal,2005,97(2):349-363
    [7]Hutchinson J J,Campbell C A,Desjardins R L.Some perspectives on carbon sequestration in agriculture[J].Agricultural and Forest Meteorology,2007,142(2-4):288-302
    [8]Nath A J,Lal R.Effects of tillage practices and land use management on soil aggregates and soil organic carbon in the north Appalachian region,USA[J].Pedosphere,2017,27(1):172-176
    [9]Haynes R J,Swift R S,Stephen R C.Influence of mixed cropping rotations(pasture-arable)on organic matter content,water stable aggregation and clod porosity in a group of soils[J].Soil and Tillage Research,1991,19(1):77-87
    [10]Hendrickson B H,Barnett A P,Beale O W.Conservation methods for soils of the Southern Piedmont[R].Washington,DC.:U.S.Department of Agriculture,1963
    [11]Conant R T,Paustian K,Elliott E T.Grassland management and conversion into grassland:effects on soil carbon[J].Ecological Applications,2001,11(2):343-355
    [12]任继周,林慧龙.草地土壤有机碳储量模拟技术研究[J].草业学报,2013,22(6):280-294
    [13]Gosling P,Parsons N,Bending G D.What are the primary factors controlling the light fraction and particulate soil organic matter content of agricultural soils?[J].Biology and Fertility of Soils,2013,49(8):1001-1014
    [14]Paul E A,Paustian K,Elliott E T,et al.Soil organic matter in temperate agroecosystems:long-term experiments in North A-merica[M].Boca Raton,Florida:CRC Press,1997
    [15]United States Department of Agriculture and Natural Resources Conservation Service.A product of the national cooperative soil survey,custom soil resource report for Scott County,Elmwood Stock Farm,Kentucky[R].2014
    [16]Paul E A,Morris S J,Bohm S.Assessment methods for soil carbon[M].Boca Raton,Florida:CRC Press,2001:193-206
    [17]Iqbal J,Siegrist J A,Nelson J A,et al.Fungal endophyte infection increases carbon sequestration potential of southeastern USA tall fescue stands[J].Soil Biology and Biochemistry,2012,44(1):81-92
    [18]Fierer N,Allen A S,Schimel J P,et al.Controls on microbial CO2production:A comparison of surface and subsurface soil horizons[J].Global Change Biology,2003,9(9):1322-1332
    [19]Christensen B T,Rasmussen J,Eriksen J,et al.Soil carbon storage and yields of spring barley following grass leys of different age[J].European Journal of Agronomy,2009,31(1):29-35
    [20]Müller-St9ver D,Hauggaard-Nielsen H,Eriksen J,et al.Microbial biomass,microbial diversity,soil carbon storage,and stability after incubation of soil from grass-clover pastures of different age[J].Biology and Fertility of Soils,2012,48(4):371-383
    [21]Fujisaki K,Perrin A S,Desjardins T,et al.From forest to cropland and pasture systems:A critical review of soil organic carbon stocks changes in Amazonia[J].Global Change Biology,2015,21(7):2773-2786
    [22]Studdert G A,Echeverría H E,Casanovas E M.Crop-pasture rotation for sustaining the quality and productivity of a Typic Argiudoll[J].Soil Science Society of America Journal,1997,61(5):1466-1472
    [23]Navarrete D,Sitch S,Araga~o L E O C,et al.Conversion from forests to pastures in the Colombian Amazon leads to contrasting soil carbon dynamics depending on land management practices[J].Global Change Biology,2016,22:3503-3517
    [24]Conrad K A,Dalal R C,Dalzell S A,et al.The sequestration and turnover of soil organic carbon in subtropical leucaenagrass pastures[J].Agriculture,Ecosystems and Environment,2017,248:38-47
    [25]Jastrow J D.Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J].Soil Biology and Biochemistry,1996,28(4-5):665-676
    [26]Cambardella C A,Elliott E T.Particulate soil organic-matter changes across a grassland cultivation sequence[J].Soil Science Society of America Journal,1992,56(3):777-783
    [27]Bayer C,Martin-Neto L,Mielniczuk J,et al.Changes in soil organic matter fractions under subtropical no-till cropping systems[J].Soil Science Society of America Journal,2001,65(5):1473-1478
    [28]Salvo L,Hernández J,Ernst O.Soil organic carbon dynamics under different tillage systems in rotations with perennial pastures[J].Soil and Tillage Research,2014,135:41-48
    [29]Duval M E,Galantini J A,Iglesias J O,et al.Analysis of organic fractions as indicators of soil quality under natural and cultivated systems[J].Soil and Tillage Research,2013,131:11-19
    [30]华娟,赵世伟,张扬,等.云雾山不同草地群落土壤活性有机碳分布特征[J].草地学报,2009,17(3):315-320
    [31]Franzluebbers A J,Hons F M,Zuberer D A.Tillage and crop effects on seasonal soil carbon and nitrogen dynamics[J].Soil Science Society of America Journal,1995,59(6):1618-1624
    [32]Rabbi S M F,Wilson B R,Lockwood P V,et al.Soil organic carbon mineralization rates in aggregates under contrasting land uses[J].Geoderma,2014,216:10-18
    [33]周玉燕,贾晓红,张烜铭,等.土壤碳矿化潜力对沙坡头人工固沙植被演变的响应[J].生态学杂志,2013,32(6):1371-1377
    [34]黄懿梅,安韶山,薛虹.黄土丘陵区草地土壤微生物C、N及呼吸熵对植被恢复的响应[J].生态学报,2009,29(6):2811-2818
    [35]Ahn M Y,Zimmerman A R,Comerford N B,et al.Carbon mineralization and labile organic carbon pools in the sandy soils of a North Florida Watershed[J].Ecosystems,2009,12(4):672-685
    [36]Rutledge S,Mudge P L,Wallace D F,et al.CO2emissions following cultivation of a temperate permanent pasture[J].Agriculture,Ecosystems and Environment,2014,184:21-33
    [37]杜宁宁,邱莉萍,张兴昌,等.半干旱区土地利用方式对土壤碳氮矿化的影响[J].干旱地区农业研究,2017,35(5):73-78
    [38]Lützow M V,K9gel-Knabner I,Ekschmitt K,et al.Stabilization of organic matter in temperate soils:mechanisms and their relevance under different soil conditions-a review[J].European Journal of Soil Science,2006,57(4):426-445
    [39]Falloon P D,Smith P.Modelling refractory soil organic matter[J].Biology and Fertility of Soils,2000,30(5-6):388-398
    [40]Schmidt M W I,Torn M S,Abiven S,et al.Persistence of soil organic matter as an ecosystem property[J].Nature,2011,478(7367):49-56
    [41]杨宁,杨满元,姜琳,等.衡阳紫色土丘陵坡地植被恢复过程中土壤可矿化碳库特征[J].草地学报,2019,27(2):320-325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700