用户名: 密码: 验证码:
黄土丘陵区侵蚀坡面土壤微生物量碳时空动态及影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal and Spatial Dynamics of Soil Microbial Biomass Carbon and Its Influencing Factors on an Eroded Slope in the Hilly Loess Plateau Region
  • 作者:覃乾 ; 朱世硕 ; 夏彬 ; 赵允格 ; 许明祥
  • 英文作者:QIN Qian;ZHU Shi-shuo;XIA Bin;ZHAO Yun-ge;XU Ming-xiang;College of Forestry,Northwest A&F University;State Key Laboratory of Soil Erosion and Dry-land Farming on the Loess Plateau,Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resource;
  • 关键词:有机碳水平 ; 侵蚀-沉积区 ; 土壤微生物量碳(SMBC) ; 土壤温湿度 ; 敏感性
  • 英文关键词:organic carbon levels;;erosion/deposing area;;soil microbial biomass carbon(SMBC);;soil temperature and humidity;;sensitivity
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:西北农林科技大学林学院;中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室;
  • 出版日期:2018-11-15 17:58
  • 出版单位:环境科学
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(41771318);; 国家重点研发计划项目(2017YFC0506503)
  • 语种:中文;
  • 页:455-462
  • 页数:8
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:S154.3;S157.1
摘要
以黄土丘陵区具有典型侵蚀和沉积部位的5个有机碳水平的侵蚀坡面为对象,通过对雨季土壤微生物量碳的研究,辨析了侵蚀-沉积条件下坡面土壤微生物量碳时空变化的影响因素及影响程度.结果表明:①土壤侵蚀导致坡面侵蚀-沉积区土壤温湿度、有机碳含量出现明显的时空分异,分异程度与土壤有机碳水平有关;②雨季末土壤微生物量碳相比雨季前显著增加,增幅可达91. 08%~286. 83%.坡面沉积区土壤微生物量碳含量大于侵蚀区,随着土壤有机碳水平升高,侵蚀-沉积区土壤微生物量碳含量差增大,空间分异加剧;③坡面侵蚀-沉积区土壤微生物量碳对土壤有机碳含量、温度、湿度等因素的敏感程度不同,雨季前土壤微生物量碳对土壤湿度变化最敏感,而雨季末沉积区土壤微生物量碳对土壤温度变化最敏感,在侵蚀区对土壤有机碳变化更为敏感.土壤侵蚀和季节变化是导致坡面土壤微生物量碳时空分布差异的重要原因,土壤微生物量碳对影响因素的敏感性差异主要是不同时空条件下限制性要素的转换所致.
        Soil erosion affects the soil environment and exerts an important impact on the soil organic carbon distribution,deposition,conversion,and carbon dioxide emission. The soil microbial biomass carbon can respond sensitively to these changes. The soil microbial biomass carbon under erosion and sedimentation conditions was studied for the erosional slopes at five organic carbon levels at typical erosion and deposition sites in the hilly loess plateau region. Through the study of the soil microbial biomass carbon in the rainy season,the influencing factors and their degree of influence on the soil microbial biomass carbon of the slope soil under erosionsedimentation conditions were analyzed. The results showed that ① Soil erosion lead to significant spatial and temporal differentiation in the soil temperature and humidity and the soil organic carbon in the erosion and sedimentary area on the slope,and the degree of differentiation was related to the soil organic carbon level. ② The soil microbial biomass carbon increased significantly at the end of the rainy season,with an increase of 91. 08%-286. 83%. The soil microbial biomass carbon content in the slope sedimentary area was higher than that of the erosion area. With increasing soil organic carbon level,the difference between the soil microbial biomass carbon content of the erosion and sedimentary area increased,and its spatial differentiation increased. ③ The soil microbial biomass carbon in the erosion and deposition areas responded differently to the soil organic carbon content,temperature,soil moisture,and other factors.Before the rainy season,the soil microbial biomass carbon was most sensitive to soil moisture changes. However,at the end of the rainy season,the soil microbial biomass carbon was most sensitive to soil temperature changes in the deposition zone. The soil microbial biomass carbon was most sensitive to the soil organic carbon in the erosion zone. Soil erosion and seasonal variation were important reasons for the spatial and temporal distribution of the soil microbial biomass carbon on the eroding slopes. The differences in the sensitivity of the soil microbial biomass carbon to the different influencing factors was mainly due to the restrictive conversion of the different factors.
引文
[1] Yue Y,Ni J R,Ciais P,et al. Lateral transport of soil carbon and land-atmosphere CO2flux induced by water erosion in China[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(24):6617-6622.
    [2] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science,2004,304(5677):1623-1627.
    [3] Van O K, Quine T A, Govers G, et al. The impact of agricultural soil erosion on the global carbon cycle[J]. Science,2007,318(5850):626-629.
    [4]刘兆云,章明奎.侵蚀-沉积连续地形中土壤碳库的空间分异[J].水土保持通报,2009,29(3):61-65.Liu Z Y,Zhang M K,Spatial variation of soil organic carbon pools in erosion-deposition continuation landform[J]. Bulletin of Soil and Water Conversation,2009,29(3):61-65.
    [5]喻为,李忠武,黄金权,等.水力侵蚀影响下土壤有机碳和微生物数量动态变化特征[J].土壤学报,2015,52(2):423-430.Yu W,Li Z W,Hung J Q,et al. Dynamics of soil microbial population and organic carbon under water erosion[J]. Acta Pedologica Sinica,2015,52(2):423-430.
    [6]万忠梅,郭岳,郭跃东.土地利用对湿地土壤活性有机碳的影响研究进展[J].生态环境学报,2011,20(3):567-570.Wan Z M,Guo Y,Guo Y D. Research progress on influence of land use on wetland soil active organic carbon[J]. Ecology and Environmental Sciences,2011,20(3):567-570.
    [7] Araújo A S F,Monteiro R T R. Microbial biomass and activity in a Brazilian soil amended with untreated and composted textile sludge[J]. Chemosphere,2006,64(6):1043-1046.
    [8]李延茂,胡江春,汪思龙,等.森林生态系统中土壤微生物的作用与应用[J].应用生态学报,2004,15(10):1943-1946.Li Y M,Hu J C,Wang S L,et al. Function and application of soil microorganisms in forest ecosystem[J]. Chinese Journal of Applied Ecology,2004,15(10):1943-1946.
    [9]张春梅,焦峰,温仲明,等.延河流域自然与人工植被地上生物量差异及其土壤水分效应的比较[J].西北农林科技大学学报(自然科学版),2011,39(4):132-138.Zhang C M,Jiao F,Wen Z M,et al. Differences of aboveground biomass and comparisons of its effect on soil moisture between natural vegetation and artificial vegetation in Yanhe basin[J]. Journal of Northwest A&F University(Natural Science Edition),2011,39(4):132-138.
    [10]何容,王国兵,汪家社,等.武夷山不同海拔植被土壤微生物量的季节动态及主要影响因子[J].生态学杂志,2009,28(3):394-399.He R,Wang G B,Wang J S,et al. Seasonal variation and its main affecting factors of soil microbial biomass under different vegetations along an elevation gradient in Wuyi Mountains of China[J]. Chinese Journal of Ecology,2009,28(3):394-399.
    [11]朴河春,洪业汤,袁芷云,等.贵州喀斯特地区土壤中微生物量碳的季节性变化[J].环境科学学报,2000,20(1):106-110.Piao H C,Hong Y T,Yuan Z Y,et al. Seasonal changes of soil microbial biomass carbon in soils under karst areas of Guizhou province[J]. Acta Scientiae Circumstantiae,2000,20(1):106-110.
    [12]胡婵娟,傅伯杰,刘国华,等.黄土丘陵沟壑区坡面尺度上微生物的空间分布规律[J].水土保持学报,2009,23(3):148-152.Hu C J,Fu B J,Liu G H,et al. Distribution of soil microbe on hill slope scale on the hilly area of the Loess Plateau[J]. Journal of Soil and Water Conservation,2009,23(3):148-152.
    [13]管海英,赵鑫,靳佳,等.荒漠生态系统土壤表层微生物量碳空间分布及其影响因子[J].干旱区研究,2014,31(6):1125-1131.Guan H Y, Zhao X, Jin J, et al. Spatial patterns of soil microbial biomass carbon and factors influencing the distribution in a typical desert ecosystem[J]. Arid Zone Research,2014,31(6):1125-1131.
    [14]鲍士旦.土壤农化分析[M].(第三版).北京:中国农业出版社,2000. 30-34.
    [15]林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志,1999,18(2):63-66.Lin Q M, Wu Y G, Liu H L. Modification of fumigation extraction method for measuring soil microbial biomass carbon[J]. Chinese Journal of Ecology,1999,18(2):63-66.
    [16] Ma W M,Li Z W,Ding K Y,et al. Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation[J]. Geomorphology,2014,226:217-225.
    [17] Chan C, Kay B D, Gregorich E G. Factors influencing mineralizable carbon in a landscape with variable topography[J].Canadian Journal of Soil Science,2007,87(5):495-509.
    [18]张瑞,苟晓敏,赵玉珍,等.东北黑土区土壤侵蚀对土壤持水性的影响[J].水土保持学报,2015,29(1):62-65.Zhang R,Gou X M,Zhao Y Z,et al. Influence of soil erosion on soil water capacity in the black soil area of northeast China[J].Journal of Soil and Water Conservation,2015,29(1):62-65.
    [19] Lal R. Soil erosion and the global carbon budget[J].Environment International,2003,29(4):437-450.
    [20] Pacala S W,Hurtt G C,Baker D,et al. Consistent land-and atmosphere-based U. S. carbon sink estimates[J]. Science,2001,292(5525):2316-2320.
    [21]吴永胜,哈斯,李双权,等.毛乌素沙地南缘沙丘生物结皮中微生物分布特征[J].生态学杂志,2010,29(8):1624-1628.Wu Y S, Ha S, Li S Q, et al. Distribution patterns of microorganisms in biological crusts on sand dunes of southern Mu Us sandy land[J]. Chinese Journal of Ecology,2010,29(8):1624-1628.
    [22]靳振江,曾鸿鹄,李强,等.起源喀斯特溶洞湿地稻田与旱地土壤的微生物数量、生物量及土壤酶活性比较[J].环境科学,2016,37(1):335-341.Jin Z J,Zeng H H,Li Q,et al. Comparisons of microbial numbers,biomasses and soil enzyme activities between paddy field and dryland origins in karst cave wetland[J].Environmental Science,2016,37(1):335-341.
    [23]邱甜甜,刘国彬,王国梁,等.黄土高原不同生长阶段油松人工林土壤微生物生物量碳的变化及其影响因素[J].应用生态学报,2016,27(3):681-687.Qiu T T,Liu G B,Wang G L,et al. Changes of soil microbial biomass carbon and their impact factors for Pinus tabuliformis plantations at different development stages on the Loess Plateau,China[J]. Chinese Journal of Applied Ecology,2016,27(3):681-687.
    [24] Joergensen R G,Brookes P C,Jenkinson D S. Survival of the soil microbial biomass at elevated temperatures[J]. Soil Biology and Biochemistry,1990,22(8):1129-1136.
    [25]赵彤,蒋跃利,闫浩,等.黄土丘陵区不同坡向对土壤微生物生物量和可溶性有机碳的影响[J].环境科学,2013,34(8):3223-3230.Zhao T,Jiang Y L,Yan H,et al. Effects of different aspects on soil microbial biomass and dissolved organic carbon of the loess hilly area[J]. Environmental Science,2013,34(8):3223-3230.
    [26]管海英,王权,赵鑫,等.两种典型荒漠植被区土壤微生物量碳的季节变化及影响因素分析[J].干旱区地理,2015,38(1):67-75.Guan H Y,Wang Q,Zhao X,et al. Seasonal patterns of soil microbial biomass C and impacting factors in two typical arid desert vegetation regions[J]. Arid Land Geography,2015,38(1):67-75.
    [27]白震,何红波,解宏图,等.施肥与季节更替对黑土微生物群落的影响[J].环境科学,2008,29(11):3230-3239.Bai Z,He H B,Xie H T,et al. Influences of fertilization and seasonal variation on microbial community in a Chinese mollisol[J]. Environmental Science,2008,29(11):3230-3239.
    [28]王超华,许明祥,冉宜凡,等.黄土丘陵区不同有机碳水平侵蚀坡面土壤微生物量碳的分布特征[J].环境科学学报,2015,35(10):3284-3291.Wang C H,Xu M X,Ran Y F,et al. Distribution of soil microbial biomass on eroded sloping land with different organic carbon contents in the hilly loess plateau region[J]. Acta Scientiae Circumstantiae,2015,35(10):3284-3291.
    [29]冯志珍,郑粉莉,易祎.薄层黑土微生物生物量碳氮对土壤侵蚀-沉积的响应[J].土壤学报,2017,54(6):1332-1344.Feng Z Z,Zheng F L,Yi Y. Responses of microbial biomass carbon and nitrogen to erosion and deposition in black soil thin in depth[J]. Acta Pedologica Sinica,2017,54(6):1332-1344.
    [30] Li Z W,Xiao H B,Tang Z H,et al. Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China[J]. European Journal of Soil Biology,2015,71:37-44.
    [31]杨凯,朱教君,张金鑫,等.不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J].生态学报,2009,29(10):5500-5507.Yang K,Zhu J J,Zhang J X,et al. Seasonal dynamics of soil microbial biomass C and N in two larch plantation forests with different ages in Northeastern China[J]. Acta Ecologica Sinica,2009,29(10):5500-5507.
    [32]肖复明,范少辉,汪思龙,等.毛竹林土壤有机碳及微生物量碳特征研究[J].水土保持学报,2008,22(6):128-131.Xiao F M, Fan S H, Wang S L, et al. A study on the characteristics of soil organic carbon and microbial biomass carbon in Phyllostachy edulis plantation[J]. Journal of Soil and Water Conservation,2008,22(6):128-131.
    [33]刘平,邱月,王玉涛,等.渤海泥质海岸典型防护林土壤微生物量季节动态变化[J].生态学报,2019,39(1):363-370.Liu P,Qiu Y,Wang Y T,et al. Seasonal dynamics of soil microbial biomass in typical shelterbelts on the Bohai muddy coast[J]. Act Ecologica Sinica,2019,39(1):363-370.
    [34] Chen D M,Mi J,Chu P F,et al. Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau[J]. Landscape Ecology,2015,30(9):1669-1682.
    [35] Tripathi B M,Moroenyane I,Sherman C,et al. Trends in taxonomic and functional composition of soil microbiome along a precipitation gradient in Israel[J]. Microbial Ecology,2017,74(1):168-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700