用户名: 密码: 验证码:
碳源添加方式对海水生物絮凝系统启动效率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of carbohydrates addition methods on start-up efficiency of seawater biofloc technology system
  • 作者:柳泽锋 ; 罗国芝 ; 谭洪新 ; 蒙浩焱
  • 英文作者:LIU Zefeng;LUO Guozhi;TAN Hongxin;MENG Haoyan;Shanghai Engineering Research Center of Aquaculture,Shanghai Ocean University;Key Laboratory of Freshwater Aquatic Genetic Resources,Ministry of Agriculture,Shanghai Ocean University;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University;
  • 关键词:生物絮凝养殖系统 ; 碳氮比 ; 碳源添加方式 ; 胞外聚合物 ; 细菌群落
  • 英文关键词:Biofloc technology aquaculture system;;carbon/nitrogen ratio;;carbohydrates addition method;;extracellular polymeric substance;;bacterial community
  • 中文刊名:上海海洋大学学报
  • 英文刊名:Journal of Shanghai Ocean University
  • 机构:上海海洋大学上海水产养殖工程技术研究中心;上海海洋大学农业部淡水水产种质资源重点实验室;上海海洋大学水产科学国家级实验教学示范中心;
  • 出版日期:2019-01-09 10:29
  • 出版单位:上海海洋大学学报
  • 年:2019
  • 期:02
  • 基金:上海水产养殖工程技术研究中心项目(16DZ2281200)
  • 语种:中文;
  • 页:100-109
  • 页数:10
  • CN:31-2024/S
  • ISSN:1674-5566
  • 分类号:X714
摘要
合理地添加碳源有利于生物絮凝系统的构建。为快速完成海水生物絮凝系统启动,在盐度为30的生物絮凝系统启动阶段探究了3种添加碳源(葡萄糖)方式对启动效率的影响。第一种在实验初始时一次性添加葡萄糖到生物絮凝系统中,使碳与总氮质量比达到15以上;第二种在系统运行的第1~10天,每天加入A组所添加葡萄糖总量的10%,此后若氨氮(TAN)上升至1 mg/L以上,则按照C/TAN为6来添加葡萄糖;第三种每天按照C/TAN为6来添加葡萄糖。结果显示:3个处理组的氨氮在实验期间总体上处于较低水平,亚硝酸氮和硝酸氮均有明显积累,但在系统运行第59天时降至最低水平。3组系统中絮体的胞外聚合物和粗蛋白等营养指标均呈现下降趋势。利用高通量测序技术对生物絮体的细菌群落结构进行分析,检测结果表明:3组生物絮体的主要优势菌群都属于变形菌门(Proteobacteria),持续添加碳源能够丰富生物絮凝系统中微生物种类。实验进行第55天时,3个处理组的生物絮凝系统启动完成。实验表明:在启动初始阶段以DOC/TN为15的比例添加葡萄糖及在系统运行期间按DOC/TAN为6的比例添加葡萄糖能够更好地形成生物絮凝系统
        Raising the carbon/nitrogen ratios of Biofloc technology( BFT) aquaculture system by providing carbohydrates can promote the growth of heterotrophic bacteria,and reform bioflocs with feces and lures in cultured water,so as to improve the utilization rate of feed protein and purify the aquaculture water.However,there is no uniform view on how to add carbohydrates. In order to prevent the aquaculture animals from being poisoned by ammonia nitrogen and nitrite nitrogen during the construction of BFT system,it is necessary to set the start-up stage of the BFT system. Therefore,a 60 days experiment was carried out to investigate three strategies of carbohydrates providing at the start-up stage of the biofloc system with salinity of30 ppt,aiming at optimizing the adding strategy of glucose,so as to shorten the formation period of the biofloc system and stabilize the water quality quickly. The first method is to add glucose to the biofloc technology( BFT) system( group A) at a one-time to make the C/TN( total nitrogen) be 15( group A). The second is10% total glucose of group A was added every day from 1 st to 10 th day,after that,if the total ammonia nitrogen( TAN) increased to above 1 mg/L,the glucose was added according to C/TAN of 6. The third is to add glucose every day according to C/TAN of 6. The results showed TAN in A and C treatment groups was generally at a low level during the experiment period. TAN in B group reached a peak value of( 16. 36 ±3. 02) mg/L on the 31 st days,nitrite nitrogen( NO2--N) and nitrate nitrogen( NO3--N) had a significant accumulation,but dropped to the lowest level on the 59 th day. The three treatment groups both had assimilation and nitrification,but the nitrification was obviously inhibited in the system with continuous addition of carbohydrates. The extracellular polymeric substances( EPS) and crude protein of bioflcos in the three treatment groups showed the trend of decreasing during the experiment period,and the settling velocity of bioflocs of the three treatment groups becomes better. The bacterial community of bioflocs was analyzed by high-throughput sequencing. The results showed that,at the phylum level the main dominant microflora of the3 different groups were Proteobacteria. Besides,Bacteroidetes and Planctomycetes were also found in group C.At the class level,the main advantage microflora in group A and group B were mainly Gammaproteobacteria,while the main dominant microflora in group C are Gammaproteobacteria,Alphaproteobacteria,Flavobacteria and Phycisphaerae. Thus, continuous addition of carbon sources can enrich microbial species. The experiment shows that the three carbohydrates additions can stabilize the water quality in about 55 days in a seawater aquaculture system using bioflocs technology. It can be concluded that the best method for the startup of seawater BFT system is maintaining C/N 15 initially,then adding carbon source to 6 of C/N when TAN was up to 1 mg/L.
引文
[1]AVNIMELECH Y.Bio-filters:the need for an new comprehensive approach[J].Aquacultural Engineering,2006,34(3):172-178.
    [2]GOLDMAN J C,CARON D A,DENNETT M R.Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C∶N ratio[J].Limnology and Oceanography,1987,32(6):1239-1252.
    [3]AVNIMELECH Y.Biofloc Technology:A Practical Guide Book[M].Baton Rouge,LA:World Aquaculture Society,2012:182.
    [4]邓应能,赵培,孙运忠,等.生物絮团在凡纳滨对虾封闭养殖试验中的形成条件及作用效果[J].渔业科学进展,2012,33(2):69-75.DENG Y N,ZHAO P,SUN Y Z,et al.Conditions for biofloc formation and its effects in closed culture system of Litopenaeus vannamei[J].Progress in Fishery Sciences,2012,33(2):69-75.
    [5]CORREIA E S,WILKENFELD J S,MORRIS T C,et al.Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system[J].Aquacultural Engineering,2014,59:48-54.
    [6]LUO G Z,LI W Q,TAN H X,et al.Comparing salinities of0,10 and 20 in biofloc genetically improved farmed tilapia(Oreochromis niloticus)production systems[J].Aquaculture and Fisheries,2017,2(5):220-226.
    [7]DE SCHRYVER P,CRAB R,DEFOIRDT T,et al.The basics of bio-flocs technology:The added value for aquaculture[J].Aquaculture,2008,277(3/4):125-137.
    [8]LUO G Z,AVNIMELECH Y,PAN Y F,et al.Inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge[J].Aquacultural Engineering,2013,52:73-79.
    [9]AVNIMELECH Y.Carbon/nitrogen ratio as a control element in aquaculture systems[J].Aquaculture,1999,176(3/4):227-235.
    [10]KRUMMENAUER D,POERSCH L H,FES G,et al.Survival and growth of Litopenaeus vannamei reared in BFTSystem under different water depths[J].Aquaculture,2016,465:94-99.
    [11]LUO G Z,LIANG W Y,TAN H X,et al.Effects of calcium and magnesium addition on the start-up of sequencing batch reactor using biofloc technology treating solid aquaculture waste[J].Aquacultural Engineering,2013,57:32-37.
    [12]EBELING J M,TIMMONS M B,BISOGNI J J.Engineering analysis of the stoichiometry of photoautotrophic,autotrophic,and heterotrophic removal of ammonia-nitrogen in aquaculture systems[J].Aquaculture,2006,257(1/4):346-358.
    [13]SATOH H,OKABE S,NORIMATSU N,et al.Significance of substrate C/N ratio on structure and activity of nitrifying biofilms determined by in situ hybridization and the use of microelectrodes[J].Water Science and Technology,2000,41(4/5):317-321.
    [14]ARNOLD S J,COMAN F E,JACKSON C J,et al.Highintensity,zero water-exchange production of juvenile tiger shrimp,Penaeus monodon:An evaluation of artificial substrates and stocking density[J].Aquaculture,2009,293(1/2):42-48.
    [15]AZIM M E,LITTLE D C.The biofloc technology(BFT)in indoor tanks:Water quality,biofloc composition,and growth and welfare of Nile tilapia(Oreochromis niloticus)[J].Aquaculture,2008,283(1/4):29-35.
    [16]JRGENSEN N,KROER N,COFFIN R B,et al.Relations between bacterial nitrogen metabolism and growth efficiency in an estuarine and an open-water ecosystem[J].Aquatic Microbial Ecology,1999,18(3):247-261.
    [17]LIM M H,SNYDER S A,SEDLAK D L.Use of biodegradable dissolved organic carbon(BDOC)to assess the potential for transformation of wastewater-derived contaminants in surface waters[J].Water Research,2008,42(12):2943-2952.
    [18]SIMSEK H,KASI M,OHM J B,et al.Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater[J].Water Research,2016,92:44-51.
    [19]BURFORD M A,LORENZEN K.Modeling nitrogen dynamics in intensive shrimp ponds:the role of sediment remineralization[J].Aquaculture,2004,229(1/4):129-145.
    [20]赵霞,赵阳丽,陈忠林,等.好氧颗粒污泥发生丝状菌污泥膨胀的控制措施[J].中国给水排水,2012,28(3):15-19.ZHAO X,ZHAO Y L,CHEN Z L,et al.Control of filamentous sludge bulking in aerobic granular sludge SBRprocess[J].China Water&Wastewater,2012,28(3):15-19.
    [21]WILN B M,JIN B,LANT P.The influence of key chemical constituents in activated sludge on surface and flocculating properties[J].Water Research,2003,37(9):2127-2139.
    [22]FRLUND B,PALMGREN R,KEIDING K,et al.Extraction of extracellular polymers from activated sludge using a cation exchange resin[J].Water Research,1996,30(8):1749-1758.
    [23]LIU H,FANG H H P.Extraction of extracellular polymeric substances(EPS)of sludge[J].Journal of Biotechnology,2002,95(3):249-256.
    [24]SHENG G P,YU H Q,WANG C M.FTIR-spectral analysis of two photosynthetic H2-producing strains and their extracellular polymeric substances[J].Applied Microbiology and Biotechnology,2006,73(1):204-210.
    [25]ERIKSSON L,ALM B.Study of flocculation mechanisms by observing effects of complexing agent on activated sludge properties[J].Water Science&Technology,1991,24(7):21-28.
    [26]MICHAUD L,LO GIUDICE A,INTERDONATO F,et al.C/N ratio-induced structural shift of bacterial communities inside lab-scale aquaculture biofilters[J].Aquacultural Engineering,2014,58:77-87.
    [27]高磊,包卫洋,张天文,等.水体碳氮比对芽孢杆菌、乳酸菌与弧菌生长、拮抗作用及菌体碳氮比的影响[J].中国海洋大学学报,2013,43(1):34-40.GAO L,BAO W Y,ZHANG T W,et al.Effect of water C:N ratio on the growth,antagonism and C:N Ratio of bacillus,lactic acid Bacteria and vibrio[J].Periodical of Ocean University of China,2013,43(1):34-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700