用户名: 密码: 验证码:
超细水雾-多孔材料协同抑制瓦斯爆炸实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synergistic inhibition of gas explosion by ultrafine water mist-porous materials
  • 作者:余明高 ; 刘梦茹 ; 温小萍 ; 裴蓓
  • 英文作者:YU Minggao;LIU Mengru;WEN Xiaoping;PEI Bei;School of Safety Science and Engineering,Henan Polytechnic University;State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University;School of Mechanical and Power Engineering,Henan Polytechnic University;
  • 关键词:超细水雾 ; 多孔材料 ; 传播速度 ; 爆炸超压 ; 协同抑制
  • 英文关键词:ultrafine water mist;;porous materials;;propagation speed;;explosion overpressure;;synergistic inhibition
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:河南理工大学安全科学与工程学院;重庆大学煤矿灾害动力学与控制国家重点实验室;河南理工大学机械与动力工程学院;
  • 出版日期:2019-05-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金资助项目(51774059,51774115,50974055)
  • 语种:中文;
  • 页:286-293
  • 页数:8
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:TD712.7
摘要
为探究超细水雾与多孔介质在协同作用下对多孔介质淬熄效果以及多孔介质上游爆炸超压的影响,自行设计并搭建了尺寸为80 mm×80 mm×1 000 mm透明有机玻璃瓦斯爆炸管道实验平台,研究超细水雾质量分数、多孔材料孔径及孔隙率对9. 5%甲烷压的协同抑制效果。实验结果表明,改变超细水雾质量分数、多孔材料孔径以及孔隙率,在多孔材料上游,最大火焰传播速度和最大爆炸超压有着显著变化,随着超细水雾质量分数增加,火焰锋面传播速度峰值和爆炸超压逐渐减小,爆炸超压峰值出现时间随之缩短,而随着孔径的减小,火焰锋面传播速度也逐渐减小,压力衰减率明显增加。同时,超细水雾和多孔材料的组合方式对瓦斯爆炸具有耦合抑制作用,管道内通入超细水雾可吸收反应区大量热能,降低反应速率与火焰传播速度,此外多孔材料的存在吸收了部分前驱冲击波,破坏正反馈机制,因此两者协同抑制优于单一抑制效果。放置在管道中的多孔材料使得传播火焰淬熄,且添加的超细水雾降低了多孔材料上游的超压,但是一旦多孔介质淬熄失败,火焰湍流加剧,可能会导致更为严重的事故发生。此外,与9. 5%甲空气预混气相比,孔隙率为87%,孔隙密度为20 PPI和超细水雾质量浓度为1 453. 1 g s,下降比例达到44. 23%,且多孔材料上游的最大爆炸超压为6. 13 kPa,降低了40. 62%,抑制效果最明显。
        In order to explore the influence of quenching effect of porous media and the explosion overpressure upstream of porous media under the synergistic effect of ultra-fine water mist and porous media,an experimental platform of transparent plexiglass gas explosion pipeline with the size of 80 mm×80 mm×1 000 mm was designed to research the synergistic inhibition effects of ultrafine water mist concentration,pore density and porosity factor on the flame propagation and explosion overpressure of 9.5% methane flame front propagation velocity and the maximum explosion overpressure have a significant diversification in the upstream of porous material by changing the concentration of ultrafine water mist,pore density and porosity factor. With the increase of ultra-fine water mist concentration,the peak flame front velocity and explosion overpressure decrease gradually,and the time of explosion overpressure peak appears shorter. As the aperture decreases,the flame front propagation velocity decreases and the pressure attenuation rate increases significantly. At the same time,the combination of ultrafine water mist and porous material has a synergistic inhibition effect on the methane amount of heat energy can be absorbed by ultra-fine water mist into the pipeline,which reduces the reaction rate and flame propagation speed. In addition,the porous material absorbs some of the precursor shock waves and destroys the positive feedback mechanism. Therefore,the synergistic inhibition effect of the two materials is better than the single inhibition effect. The porous material placed in the pipeline makes the propagation flame quenched,and ultrafine water mist added reduces the overpressure upstream of the porous material. However,once the quenching of porous media fails,the flame turbulence would intensify,which may lead to more serious accidents. In addition,compared with the 9.5% methane concentration,the flame front propagation speed was 12.8 m explosion overpressure in the upstream of the porous material was 6.13 kPa,which was reduced by 40.62%,the inhibition effect was the most obvious.
引文
[1]王贵师.数字频率锁定技术空气中甲烷浓度测量中的应用[A].中国大气环境科学与技术大会暨中国环境科学学会大气环境分会2012年学术年会[C].2012.WANG Guishi.Application of digital frequency locking technology in the measurement of methane concentration in air[A].China Conference on Atmospheric Environmental Science and technology and the annual conference of atmospheric environment division of the China Environmental Science Society in 2012[C].2012.
    [2]LI Hongmeng,LI Guoxiu,SUN Z Y,et al.Effect of dilution on laminar burning characteristics of H2/CO/CO2/air premixed flames with various hydrogen fractions[J].Experimental Thermal&Fluid Science,2016,74:160-168.
    [3]ZHANG Y,SHEN W,ZHANG H,et al.Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames[J].Fuel,2015,157:115-121.
    [4]王信群,王婷,徐海顺,等.BC粉体抑爆剂改性及抑制甲烷/空气混合物爆炸[J].化工学报,2015,66(12):5171-5178.WANG Xinqun,WANG Ting,XU Haishun,et al.Modification of BCpowder explosion suppressant and suppression of methane/air mixture explosion[J].Chemical Engineering Journal,2015,66(12):5171-5178.
    [5]罗振敏,邓军,文虎,等.纳米粉体抑制矿井瓦斯爆炸的实验研究[J].中国安全科学学报,2008,18(12):84.LUO Zhenmin,DENG Jun,WEN Hu,et al.Experimental study on inhibition of mine gas explosion by nano powder[J].Chinese Journal of Safety Science,2008,18(12):84.
    [6]张鹏鹏.超细水雾增强与抑制瓦斯爆炸的实验研究[D].大连:大连理工大学,2013.ZHANG Pengpeng.Experimental study on enhancement and suppression of gas explosion by ultrafine water mist[D].Dalian:Dalian University of Technology,2013.
    [7]ACTON M R,SUTTON P,WICKENS M J.Investigation of the mitigation of gas cloud explosions by water sprays[A].Institution of Chemical Engineers Symposium Series[C].1990(122):61-76.
    [8]GUPTA M,PASI A,RAY A,et al.An experimental study of the effects of water mist characteristics on pool fire suppression[J].Experimental Thermal and Fluid Science,2013,44:768-778.
    [9]LENTATI A M,CHELLIAH H K.Physical,thermal,and chemical effects of fine-water droplets in extinguishing counterflow diffusion flames[J].Symposium on Combustion,1998,27(2):2839-2846.
    [10]喻健良.预混火焰在微小通道中传播和淬熄的研究[D].大连:大连理工大学,2008.YU Jianliang.Study on the propagation and quenching of premixed flames in micro channels[D].Dalian:Dalian University of Technology,2008.
    [11]JOO H I,DUNCAN K,CICCARELLIL G.Flame-quenching performance of ceramic foam[J].Combustion Science&Technology,2006,178(10-11):1755-1769.
    [12]CUI Y Y,WANG Z R,ZHOU K B,et al.Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines[J].Journal of Loss Prevention in the Process Industries,2016,45:69-77.
    [13]CHEN P,HUANG F,SUN Y,et al.Effects of metal foam meshes on premixed methane-air flame propagation in the closed duct[J].Journal of Loss Prevention in the Process Industries,2017,47:22-28.
    [14]PEI B,YU M,CHEN L,et al.Experimental study on the synergistic inhibition effect of gas-liquid two phase medium on gas explosion[J].Journal of Loss Prevention in the Process Industries,2016,49.
    [15]王燕,程义伸,曹建亮,等.核-壳型KHCO3/赤泥复合粉体的甲烷抑爆特性[J].煤炭学报,2017,42(3):653-658.WANG Yan,CHENG Yishen,CAO Jianliang,et al.Methane explosion suppression characteristics of core shell KHCO3/red mud composite powder[J].Journal of China Coal Society,2017,42(3):653-658.
    [16]LUO Z,WANG T,TIAN Z,et al.Experimental study on the suppression of gas explosion using the gas-solid suppressant of CO2/ABC powder[J].Journal of Loss Prevention in the Process Industries,2014,30(1):17-23.
    [17]JIANG B,LIU Z,TANG M,et al.Active suppression of premixed methane/air explosion propagation by non-premixed suppressant with nitrogen and ABC powder in a semi-confined duct[J].Journal of Natural Gas Science&Engineering,2016,29:141-149.
    [18]刘笑言.多孔材料对管道内火焰传播抑制的数值研究[D].大连:大连理工大学,2011.LIU Xiaoyan.Numerical study on suppressing flame propagation in the pipe with porous materials[D].Dalian:Dalian University of Technology,2011.
    [19]魏春荣.多孔材料对瓦斯爆炸抑制作用研究[D].哈尔滨:哈尔滨工业大学,2013.WEI Chunrong.Porous materials inhibition on gas explosion[D].Harbin:Harbin Institute of Technology,2013.
    [20]裴蓓.气液两相介质抑制管道瓦斯爆炸协同规律及机理研究[D].焦作:河南理工大学,2017.PEI Bei.Study on the synergistic inhibition law and mechanism of gas-liquid two-phase medium on gas explosion in pipeline[D].Jiaozuo:Henan P0lytechnic University,2017.
    [21]CLANET C,SEARBY G.On the“tulip flame”phenomenon[J].Combustion&Flame,1996,105(1-2):225-238.
    [22]PONIZY B,CLAVERIE A,VEYSSIERE B.Tulip flame-The mechanism of flame front inversion[J].Combustion&Flame,2014,161(12):3051-3062.
    [23]SHIMIZU H,TSUZUKI M,YAMAZAKI Y,et al.Experiments and numerical simulation on methane flame quenching by water mist[J].Journal of Loss Prevention in the Process Industries,2001,14(6):603-608.
    [24]PARRA T,CASTRO F,MENDEZ C,et al.Extinction of premixed methane-air flames by water mist[J].Fire Safety Journal,2004,39(7):581-600.
    [25]CAO X Y,REN J J,BI M S,et al.Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive[J].Journal of Loss Prevention in the Process Industries,2016,43:352-360.
    [26]张金锋,郑艳敏,孙忠强.多孔材料对瓦斯爆炸传播影响规律的研究[A].2012(沈阳)国际安全科学与技术学术研讨会[C].2012.ZHANG Jinfeng,ZHENG Yanmin,SUN Zhongqiang.Study on the influence of porous materials on the propagation of gas explosion[A].2012(Shenyang)International Symposium on safety science and technology[C].2012.
    [27]刘欣,薛向欣,段培宁.多孔结构对材料吸波性能的影响[J].材料与冶金学报,2007,6(4):306-310.LIU Xin,XUE Xiangxin,DUAN Peining.Effect of porous structure on microwave absorbing properties of materials[J].Journal of materials and metallurgy,2007,6(4):306-310.
    [28]CICCARELLI G.Explosion propagation in inert porous media[J].Philosophical Transactions,2012,370(1960):647-667.
    [29]秦文茜,王喜世,谷睿,等.超细水雾作用下瓦斯的爆炸压力及升压速率[J].燃烧科学与技术,2012,18(1):90-95.QIN Wenqian,WANG Xishi,GU Rui,et al.Explosion pressure and pressure increasing rate of gas under superfine water mist[J].Combustion Science and Technology,2012,18(1):90-95.
    [30]ANANTH R,WILLAUER H D,FARLEY J P,et al.Effects of fine water mist on a confined blast[J].Fire Technology,2012,48(3):641-675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700