用户名: 密码: 验证码:
微肋管内的换热强化的实验和理论分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental and theoretical analysis of heat transfer enhancement inside micro-fin tube
  • 作者:申道明 ; 桂超 ; 刘亚萍 ; 夏锦红 ; 薛松涛
  • 英文作者:Shen Daoming;Gui Chao;Liu Yaping;Xia Jinhong;Xue Songtao;College of Civil Engineering and Architecture,Xinxiang University;Research institute of structural engineering and disaster reduction,Tongji university;Department of Architecture,Tohoku Institute of Technology;
  • 关键词:R1234yf ; 微肋管 ; 传热系数 ; 换热强化倍率 ; 关联式
  • 英文关键词:R1234yf;;micro-fin tube;;heat transfer coefficient;;heat transfer enhancement factor;;correlation
  • 中文刊名:低温工程
  • 英文刊名:Cryogenics
  • 机构:新乡学院土木工程与建筑学院;同济大学结构工程与防灾研究所;日本东北工业大学;
  • 出版日期:2019-06-15
  • 出版单位:低温工程
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金项目(No.4187725)
  • 语种:中文;
  • 页:5-11
  • 页数:7
  • CN:11-2478/V
  • ISSN:1000-6516
  • 分类号:TK124
摘要
在1根光管、2根微肋管内运行了R1234yf两相流动冷凝换热实验,工况设定中冷凝温度为40℃、43℃、45℃,质量流量为500—900 kg/(m~2·s),换热管进出口处制冷剂干度分别为0.8—0.9、0.2—0.3。实验结果显示:传热系数随冷凝温度的降低、质量流量的增加而增大,且微肋管内传热系数均大于光管内传热系数,其中8°和15°肋片螺旋角微肋管换热强化倍率分别为2.51—2.89、3.11—3.57,均大于其面积增加比;使用关联式对管内传热系数预测时:Cavallini et al关联式对光管内传热系数预测精度最高,其预测误差范围在±8%以内,预测平均误差为0.56%;Cavallini et al关联式和Koyama et al关联式对微肋管内传热系数预测精度较高,其预测误差范围在±25%以内,两者的平均预测误差小于6%。
        The two-phase flow condensation heat transfer experiment of R1234 yf was performed inside one smooth tube and two micro-fin tubes in the paper, experimental condition was set as condensation temperatures of 40 ℃, 43 ℃ and 45 ℃, mass fluxes of 500—900 kg/(m~2·s), vapor qualities at the inlet and outlet of heat transfer tube of 0.8—0.9 and 0.2—0.3. Experimental results show: the heat transfer coefficient increases with decreasing condensation temperature and increasing mass flux, the heat transfer coefficient inside the micro-fin tube is larger than that of smooth tube, the heat transfer enhancement factor of micro-fin tube with fin helical angle of 8° and 15° is 2.51—2.89 and 3.11—3.57, respectively, which are greater than the area increase ratio. Correlation was used to predict the heat transfer coefficient inside the tube and it is found: Cavallini et al correlation has the highest accuracy in predicting the heat transfer coefficient inside the smooth tube with error range within ±8% and average prediction error of 0.56%; correlations of Cavallini et al and Koyama et al have relatively high in predicting the heat transfer coefficient inside the micro-fin tube with error range within ±25% and average prediction error of less than 6%.
引文
1 王盟,范广铭,孙中宁.微肋管强化传热及优化设计[J].石油化工设备,2011,40(4):4-7.Wang Meng,Fan Guangming,Sun Zhongning.Heat transfer enhancement and optimal design of micro rib tube[J].Petrochemical Equipment,2011,40(4):4-7.
    2 吴晓敏,王晓亮,王维城.水平新型微肋管内流动冷凝换热及流阻特性[J].上海理工大学学报,2003,25(4):326-329.Wu Xiaomin,Wang Xiaoliang,Wang Weicheng.Flow condensation heat transfer and pressure drop in horizontal micro-fin tubes[J].Journal of Shanghai University of Science and Technology,2003,25(4):326-329.
    3 郑钢,宋吉,吴晓伟.微肋管结构对管内冷凝换热影响的研究[J].制冷与空调,2007,7(2):80-82.Zheng Gang,Song Ji,Wu Xiaowei.Research on the impact of micro-fin tube geometrical parameters on condensation[J].Refrigeration and Air Conditioning,2007,7(2):80-82.
    4 唐上朝,刘星,陶文铨.R22在水平微肋管和光管内凝结换热的实验研究[J].郑州轻工业学院学报:自然科学版,2007,22(1):42-45.Tang Shangchao,Liu Xing,Tao Wenquan.Expermiental investigation on condensation heat transfer in horizontal microfin and smooth tube with refrigerant R22[J].Journal of Zhengzhou Institute of Light Industry:Natural Science Edition,2007,22(1):42-45.
    5 Thome J R,Hajal J E,Cavallini A.Condensation in horizontal tubes,part 2:new heat transfer model based on flow regimes[J].International Journal of Heat & Mass Transfer,2003,46(18):3365-3387.
    6 Jung D,Song K H,Cho Y,et al.Flow condensation heat transfer coefficients of pure refrigerants[J].International Journal of Refrigeration,2003,26(1):4-11.
    7 Cavallini A,Col D D,Doretti L,et al.A new computational procedure for heat transfer and pressure drop during refrigerant condensation inside enhanced tubes[J].Journal of Enhanced Heat Transfer,1999(6):441-456.
    8 Olivier J A,Liebenberg L,Thome J R,et al.Heat transfer,pressure drop,and flow pattern recognition during condensation inside smooth,helical micro-fin,and herringbone tubes[J].International Journal of Refrigeration,2007,30(4):609-623.
    9 Miyara A,Nonaka K,Taniguchi M.Condensation heat transfer and flow pattern inside a herringbone-type micro-fin tube[J].International Journal of Refrigeration,2005,23(2):141-152.
    10 Kim Y,Seo K,Jin T C.Evaporation heat transfer characteristics of R-410A in 7 and 9.52 mm smooth/micro-fin tubes[J].International Journal of Refrigeration,2002,25(6):716-730.
    11 王鸾.微肋管换热器强化换热技术的研究[D].哈尔滨:哈尔滨工程大学,2010.Wang Luan.Study on enhanced heat transfer technology of micro-rib tube heat exchanger [D].Harbin:Harbin Engineering University,2010.
    12 贾纱纱.双侧强化管外HFO1234ze凝结换热特性及模型研究[D].郑州:中原工学院.2018.Jia Shasha.Study on the characteristics and models of HFO1234ze condensation heat transfer outside the reinforced tube on both sides [D].Zhengzhou:Zhongyuan Institute of Technology,2018.
    13 Cavallini A,Censi G,Col D D,et al.Condensation inside and outside smooth and enhanced tubes-a review of recent research[J].International Journal of Refrigeration,2003,26(4):373-392.
    14 Goto M,Inoue N,Ishiwatari N.Condensation and evaporation heat transfer of R410A inside internally grooved horizontal tubes[J].International Journal of Refrigeration,2003,26(4):410-416.
    15 Tang L,Ohadi M M,Johnson A T.Flow condensation in smooth and micro-fin tubes with HCFC-22,HFC-134a and HFC-410A refrigerants.Part I:experimental results[J].Journal of Enhanced Heat Transfer,2000,7(5):289-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700