用户名: 密码: 验证码:
磁性液体数值模拟研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent progress on the simulation technology of magnetic fluid
  • 作者:裴雷 ; 龚兴龙 ; 宣守虎
  • 英文作者:Lei Pei;Xinglong Gong;Shouhu Xuan;Key Laboratory of Mechanical Behavior and Design of Materials, Center for Excellence in Complex System Mechanics, Chinese Academy of Sciences, Department of Modern Mechanics, University of Science and Technology of China;
  • 关键词:磁性液体 ; 磁流变 ; 力学性能 ; 力学模型 ; 数值模拟
  • 英文关键词:magnetic fluid;;magnetorheological;;mechanical property;;mechanical model;;simulation
  • 中文刊名:科学通报
  • 英文刊名:Chinese Science Bulletin
  • 机构:中国科学技术大学近代力学系中国科学院复杂系统力学卓越创新中心中国科学院材料力学行为和设计国家重点实验室;
  • 出版日期:2019-04-09 11:40
  • 出版单位:科学通报
  • 年:2019
  • 期:15
  • 语种:中文;
  • 页:39-54
  • 页数:16
  • CN:11-1784/N
  • ISSN:0023-074X
  • 分类号:TB381
摘要
磁性液体(magneticfluid)是一种力学性能受磁场调控的磁流变智能材料,在医学与工业生产中有广泛应用.近年来,随着计算机性能的发展,数值模拟日益成为研究磁性液体力学行为细观机理的重要方法.本文综述并评价了磁性液体理论与数值模拟领域的最新研究进展,介绍了磁性液体在剪切、挤压和阀模式3种工作模式下的力学模型,对磁性液体的现有模拟方法进行了总结,讨论了磁性液体数值模拟的研究现状,并展望了数值模拟的发展前景.磁性液体的数值模拟亟待开展以下三方面研究:(1)建立涵盖多种微观相互作用的精细理论模型,研究颗粒表面包覆、添加剂等非磁性成分对磁流变效应的影响;(2)将不同数值模拟方法相结合,建立磁性液体的多尺度模型,进一步提高模拟精度,利用机器学习协调不同尺度的数值模拟,压缩计算量,已成为一种可行思路;(3)将力学模型与电、磁学模型相结合,发展多尺度、多物理场耦合的数值模拟方法,模拟磁性液体其他物理性能.最终为高性能磁性液体的研制及其应用研究提供技术和理论支撑.
        Magnetic fluid is a novel magnetorheological(MR) intelligent material consisting of magnetic particles, non-magnetic matrix, and additive agents. After applying the external magnetic field, magnetic particles will interact with each other due to the magnetic dipolar forces. The viscosity and yield stress of magnetic fluid could increase several orders of magnitude in milliseconds, which is called the MR effect. The controllable and reversible property makes magnetic fluid widely applied in drug targeting delivery, magnetic thermal therapy, commercial dampers, and polishing etc. In order to comprehend the mechanical behaviors of magnetic fluid, researchers developed several theoretical models for different flow conditions. However, due to the extensive calculation, theoretical models are only applicable for some special problems, such as 2-dimensional and axial symmetry. In recent years, with the development of computer performance, simulation has become an important method to investigate the MR mechanism of magnetic fluid. This paper reviews the recent progress in the theory and simulation of magnetic fluid. Firstly, theoretical models of magnetic fluid under shear mode, squeeze mode, and valve mode are introduced. Secondly, the existing simulation methods for magnetic fluid, such as molecular dynamics, particle-level dynamic simulation, and finite element method, are illustrated. The validity of the methods and their merits and drawbacks are discussed. Then, the research progress of the simulation of magnetic fluid is summarized from 3 aspects: Simulations of mechanical properties of novel magnetic fluid, simulations of complex mechanical behaviors of conventional magnetic fluid, and simulations of biomagnetic fluid. Finally, some future trends of simulation of magnetic fluid are proposed. The following 3 topics should be emphasized in the future work. First, a comprehensive theoretical model considering a variety of microscopic interactions is required. In order to prepare magnetic particles with high MR effect, excellent dispersibility, and low density, surface coating, modification, and additive agents are usually applied in experiments. Unfortunately, the influence of non-magnetic components on the MR effect is seldom considered in simulations. Second, current simulations could not simultaneously obtain the macroscopic mechanical properties and microstructures of magnetic fluid in complex flow. Finite element method and computational fluid dynamics are applicable for complex macroscopic problems but can not obtain the microstructures at the same time. Mesoscopic simulation methods can not exhibit large-scale aggregations of particles, which leads to the deviation compared with experiments. To establish multi-scale simulation methods and improve the accuracy of simulations have become an urgent requirement. Combining simulation methods with different spatial scales and reducing the time cost by using machine learning have become a possible approach. Third, multi-physics coupling simulation methods should be established. The magnetic field controlled electrical properties of magnetic fluid have attracted researchers' interest in recent years. Magnetic fluid with this novel controllable property could be widely applied in battery and sensors. Investigations on other physical properties of magnetic fluid by using mechanical, electrical, and magnetic model together will be a future trend. These achievements will all contribute to the development of high-performance magnetic fluids and further enlarge the range of applications of magnetic fluid.
引文
1 Li X H.Nano-magnetic Fluid:Preparation,Performance and Application(in Chinese).Beijing:Science Press,2009.1-5[李学慧.纳米磁性液体:制备,性能及其应用.北京:科学出版社,2009.1-5]
    2 De Vicente J,Klingenberg D J,Hidalgo-Alvarez R.Magnetorheological fluids:A review.Soft Matter,2011,7:3701-3710
    3 Kim H C,Han C,Kim P,et al.A new measurement method of magnetic flux density using magnetorheological fluid characteristics and a variable resistor circuit.Smart Mater Struct,2015,24:087002
    4 Pineux F,Marega R,Stopin A,et al.Biotechnological promises of Fe-filled CNTs for cell shepherding and magnetic fluid hyperthermia applications.Nanoscale,2015,7:20474-20488
    5 Lee J W,Hong K P,Cho M W,et al.Polishing characteristics of optical glass using PMMA-coated carbonyl-iron-based magnetorheological fluid.Smart Mater Struct,2015,24:065002
    6 Sun S S,Yang J,Li W H,et al.Development of a novel variable stiffness and damping magnetorheological fluid damper.Smart Mater Struct,2015,24:085021
    7 Sun S S,Ning D H,Yang J,et al.Development of an MR seat suspension with self-powered generation capability.Smart Mater Struct,2017,26:085025
    8 Aravind A,Nair R,Raveendran S,et al.Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy.J Magn Magn Mater,2013,344:116-123
    9 Margida A J,Weiss K D,Carlson J D.Magnetorheological materials based on iron alloy particles.Int J Mod Phys B,1996,10:3335-3341
    10 Pu H T,Jiang F J.Towards high sedimentation stability:Magnetorheological fluids based on CNT/Fe3O4 nanocomposites.Nanotechnology,2005,16:1486
    11 Jang D S,Liu Y D,Kim J H,et al.Enhanced magnetorheology of soft magnetic carbonyl iron suspension with hard magneticγ-Fe2O3nanoparticle additive.Colloid Polym Sci,2015,293:641-647
    12 Luo X P,Li T F,Yi H L,et al.Dissipative particle dynamics simulation of biomagnetic fluid flow and heat transfer(in Chinese).Chin Sci Bull,2017,62:446-454[罗小平,李天富,易红亮,等.生物磁流体传热的耗散粒子动力学模拟.科学通报,2017,62:446-454]
    13 Guo C Y.Study on normal force of magnetorheological fluid and magnetorheological damper(in Chinese).Doctor Dissertation.Hefei:University of Science and Technology of China,2013[郭朝阳.磁流变液法向力及减振器研究.博士学位论文.合肥:中国科学技术大学,2013]
    14 Liu M.Fluid dynamics of colloidal magnetic and electric liquid.Phys Rev Lett,1995,74:4535
    15 Shahrivar K,Carreón-González E,Morillas J R,et al.Aggregation kinetics of carbonyl iron based magnetic suspensions in 2D.Soft Matter,2017,13:2677-2685
    16 Li W H,Du H.Design and experimental evaluation of a magnetorheological brake.Int J Adv Des Manuf Technol,2003,21:508-515
    17 Gedik E,Kurt H,Recebli Z,et al.Two-dimensional CFD simulation of magnetorheological fluid between two fixed parallel plates applied external magnetic field.Comput Fluids,2012,63:128-134
    18 Okada K,Satoh A.Regime of aggregate structures and magneto-rheological characteristics of a magnetic rod-like particle suspension:Monte Carlo and Brownian dynamics simulations.J Magn Magn Mater,2017,437:29-41
    19 Bahiuddin I,Mazlan S A,Shapiai M I,et al.A new constitutive model of a magneto-rheological fluid actuator using an extreme learning machine method.Sens Actuators A,2018,281:209-221
    20 Pei L,Pang H M,Chen K H,et al.Simulation of the optimal diameter and wall thickness of hollow Fe3O4 microspheres in magnetorheological fluid.Soft Matter,2018,14:5080-5091
    21 Sherman S G,Becnel A C,Wereley N M.Relating Mason number to Bingham number in magnetorheological fluids.J Magn Magn Mater,2015,380:98-104
    22 Tang H S,Kalyon D M.Estimation of the parameters of Herschel-Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers.Rheol Acta,2004,43:80-88
    23 Dimakopoulos Y,Pavlidis M,Tsamopoulos J.Steady bubble rise in Herschel-Bulkley fluids and comparison of predictions via the augmented Lagrangian method with those via the Papanastasiou model.J Non-Newton Fluid Mech,2013,200:34-51
    24 Zhu H,Kim Y D,De Kee D.Non-Newtonian fluids with a yield stress.J Non-Newton Fluid Mech,2005,129:177-181
    25 Yang S P,Zhu K Q.Analytical solutions for squeeze flow of Bingham fluid with Navier slip condition.J Non-Newton Fluid Mech,2006,138:173-180
    26 Mendes P R S,Dutra E S S.Viscosity function for yield-stress liquids.Appl Rheol,2004,14:296-302
    27 Walawender W P,Chen T Y,Cala D F.An approximate Casson fluid model for tube flow of blood.Biorheology,1975,12:111-119
    28 Bahrainian S S,Nabati A,Haji Davalloo E.Improved rheological model of oil-based drilling fluid for south-western Iranian oilfields.JPet Sci Technol,2018,8:53-71
    29 Kelessidis V C,Maglione R.Modeling rheological behavior of bentonite suspensions as Casson and Robertson-Stiff fluids using Newtonian and true shear rates in Couette viscometry.Powder Technol,2006,168:134-147
    30 Liu T X.Study on the magneto-mechanical behavior of magnetorheological plastomer and its microstructure-based mechanism(in Chinese).Doctor Dissertation.Hefei:University of Science and Technology of China,2015[刘太祥.磁流变塑性体磁致力学行为及其内部结构演化机理研究.博士学位论文.合肥:中国科学技术大学,2015]
    31 Keaveny E E,Maxey M R.Modeling the magnetic interactions between paramagnetic beads in magnetorheological fluids.J Comput Phys,2008,227:9554-9571
    32 Ly H V,Reitich F,Jolly M R,et al.Simulations of particle dynamics in magnetorheological fluids.J Comput Phys,1999,155:160-177
    33 Parsegian V A.Van der Waals Forces:A Handbook for Biologists,Chemists,Engineers,and Physicists.New York:Cambridge University Press,2006.149-163
    34 Klingenberg D J,Olk C H,Golden M A,et al.Effects of nonmagnetic interparticle forces on magnetorheological fluids.J Phys:Condens Matter,2010,22:324101
    35 De Vicente J,Ramírez J.Effect of friction between particles in the dynamic response of model magnetic structures.J Colloid Interface Sci,2007,316:867-876
    36 Pappas Y,Klingenberg D J.Simulations of magnetorheological suspensions in Poiseuille flow.Rheol Acta,2006,45:621-629
    37 De Vicente J,Ruiz-López J A,Andablo-Reyes E,et al.Squeeze flow magnetorheology.J Rheol,2011,55:753-779
    38 Engmann J,Servais C,Burbidge A S.Squeeze flow theory and applications to rheometry:A review.J Non-Newtonian Fluid Mech,2005,132:1-27
    39 Raphaelides S N,Gioldasi A.Elongational flow studies of set yogurt.J Food Eng,2005,70:538-545
    40 Covey G H,Stanmore B R.Use of the parallel-plate plastometer for the characterisation of viscous fluids with a yield stress.JNon-Newton Fluid Mech,1981,8:249-260
    41 Williams E W,Rigby S G,Sproston J L,et al.Electrorheological fluids applied to an automotive engine mount.J Non-Newton Fluid Mech,1993,47:221-238
    42 Yang F Q.Tension and compression of electrorheological fluid.J Colloid Interface Sci,1997,192:162-165
    43 Ruiz-López J A,Wang Z W,Hidalgo-Alvarez R,et al.Simulations of model magnetorheological fluids in squeeze flow mode.J Rheol,2017,61:871-881
    44 Bossis G,Mathis C,Mimouni Z,et al.Magnetoviscosity of micronic suspensions.Europhys Lett,1990,11:133
    45 Tamura H,Doi M.Electro-rheological effects in a flow through a narrow slit.J Phys Soc Jpn,1992,61:3984-3993
    46 Wen Y H,Zhu R Z,Zhou F X,et al.An overview on molecular dynamics simulation(in Chinese).Adv Mech,2003,33:65-73[文玉华,朱如曾,周富信,等.分子动力学模拟的主要技术.力学进展,2003,33:65-73]
    47 Barski M,Chwa?M,K?dziora P.Molecular dynamics in simulation of magneto-rheological fluids behavior.Key Eng Mater,2013,542:11-27
    48 Satoh A,Chantrell R W.Application of the dissipative particle dynamics method to magnetic colloidal dispersions.Mol Phys,2006,104:3287-3302
    49 Li W M,Li Q.Study about the structure and dynamics of magnetic nanofluids using a mesoscopic simulation approach.Nonlinear Dyn,2018,91:2141-2155
    50 Li W M,Jie O Y,Zhuang X.Dissipative particle dynamics simulation for the microstructures of ferromagnetic fluids.Soft Mater,2016,14:87-95
    51 Klingenberg D J,Van Swol F,Zukoski C F.Dynamic simulation of electrorheological suspensions.J Chem Phys,1989,91:7888-7895
    52 Michaelides E E.Brownian movement and thermophoresis of nanoparticles in liquids.Int J Heat Mass Transfer,2015,81:179-187
    53 Liu T X,Gu R,Gong X L,et al.Structural and rheological study of magnetic fluids using molecular dynamics.Magnetohydrodynamics,2010,46:257-269
    54 Gong X L,Guo C Y,Xuan S H,et al.Oscillatory normal forces of magnetorheological fluids.Soft Matter,2012,8:5256-5261
    55 Wei S X,Shen Y,Huang Y J.Development and application of computational fluid dynamics(in Chinese).J Hebei Inst Technol,2005,27:115-117[魏淑贤,沈跃,黄延军.计算流体力学的发展及应用.河北理工学院学报,2005,27:115-117]
    56 Mousavi S M,Darzi A A R,Akbari O A,et al.Numerical study of biomagnetic fluid flow in a duct with a constriction affected by a magnetic field.J Magn Magn Mater,2019,473:42-50
    57 Gong X L,Ruan X H,Xuan S H,et al.Magnetorheological damper working in squeeze mode.Adv Mech Eng,2014,6:410158
    58 Deng X G,Zong W G,Zhang L P,et al.Verification and validation in computational fluid dynamics(in Chinese).Adv Mech,2007,37:279-288[邓小刚,宗文刚,张来平,等.计算流体力学中的验证与确认.力学进展,2007,37:279-288]
    59 Bompos D A,Nikolakopoulos P G.CFD simulation of magnetorheological fluid journal bearings.Simul Model Pract Th,2011,19:1035-1060
    60 Lacis S,Gosko D.Direct numerical simulation of motion of ferromagnetic particles in magnetorheological suspension.Integr Ferroelectr,2008,102:18-28
    61 Han K,Feng Y T,Owen D R J.Three-dimensional modelling and simulation of magnetorheological fluids.Int J Numer Meth Eng,2010,84:1273-1302
    62 Gurubasavaraju T M,Kumar H,Mahalingam A.An approach for characterizing twin-tube shear-mode magnetorheological damper through coupled FE and CFD analysis.J Braz Soc Mech Sci Eng,2018,40:139
    63 He L,Tafti D K,Nagendra K.Evaluation of drag correlations using particle resolved simulations of spheres and ellipsoids in assembly.Powder Technol,2017,313:332-343
    64 Wang X C.Finite Element Method(in Chinese).Beijing:Tsinghua University Press,2003.14-19[王勖成.有限单元法.北京:清华大学出版社,2003.14-19]
    65 Warnke K C.Finite-element modeling of the separation of magnetic microparticles in fluid.IEEE Trans Magn,2003,39:1771-1777
    66 Patel S A,Chhabra R P.Steady flow of Bingham plastic fluids past an elliptical cylinder.J Non-Newtonian Fluid Mech,2013,202:32-53
    67 Ma L,Song W L,Wang R S,et al.Study on shear stress model of magnetorheological fluids with distance weighted factors.Smart Mater Struct,2017,26:065009
    68 Samuel A L.Some studies in machine learning using the game of checkers.IBM J Res Dev,1959,3:210-229
    69 Zeinali M,Mazlan S A,Fatah A Y A,et al.A phenomenological dynamic model of a magnetorheological damper using a neuro-fuzzy system.Smart Mater Struct,2013,22:125013
    70 Zhao L F,Li Z,Caswell B,et al.Active learning of constitutive relation from mesoscopic dynamics for macroscopic modeling of non-Newtonian flows.J Comput Phys,2018,363:116-127
    71 Schmidt M,Lipson H.Distilling free-form natural laws from experimental data.Science,2009,324:81-85
    72 Upadhyay R V,Laherisheth Z,Shah K.Rheological properties of soft magnetic flake shaped iron particle based magnetorheological fluid in dynamic mode.Smart Mater Struct,2013,23:015002
    73 López-López M T,Kuzhir P,Bossis G.Magnetorheology of fiber suspensions.I.Experimental.J Rheol,2009,53:115-126
    74 Machovsky M,Mrlik M,Kuritka I,et al.Novel synthesis of core-shell urchin-like Zn O coated carbonyl iron microparticles and their magnetorheological activity.RSC Adv,2014,4:996-1003
    75 An J S,Han W J,Choi H J.Synthesis of hollow magnetite nanoparticles via self-assembly and their magnetorheological properties.Colloids Surf A,2017,535:16-23
    76 Satoh A.On aggregate structures in a rod-like haematite particle suspension by means of Brownian dynamics simulations.Mol Phys,2014,112:2122-2137
    77 Wu J,Pei L,Xuan S H,et al.Particle size dependent rheological property in magnetic fluid.J Magn Magn Mater,2016,408:18-25
    78 Pei L,Pang H M,Ruan X H,et al.Magnetorheology of a magnetic fluid based on Fe3O4 immobilized Si O2 core-shell nanospheres:Experiments and molecular dynamics simulations.RSC Adv,2017,7:8142-8150
    79 Ruan X H,Pei L,Xuan S H,et al.The rheological responds of the superparamagnetic fluid based on Fe3O4 hollow nanospheres.J Magn Magn Mater,2017,429:1-10
    80 Liu T X,Gong X L,Xu Y G,et al.Magneto-induced stress enhancing effect in a colloidal suspension of paramagnetic and superparamagnetic particles dispersed in a ferrofluid medium.Soft Matter,2014,10:813-818
    81 Wang Z W,Shahrivar K,De Vicente J.Creep and recovery of magnetorheological fluids:Experiments and simulations.J Rheol,2014,58:1725-1750
    82 Son K J.A discrete element model for the influence of surfactants on sedimentation characteristics of magnetorheological fluids.Korea-Aust Rheol,2018,30:29-39
    83 Fernández-Toledano J C,Ruiz-López J A,Hidalgo-álvarez R,et al.Simulations of polydisperse magnetorheological fluids:A structural and kinetic investigation.J Rheol,2015,59:475-498
    84 Segovia-Gutierrez J P,De Vicente J,Hidalgo-Alvarez R,et al.Brownian dynamics simulations in magnetorheology and comparison with experiments.Soft Matter,2013,9:6970-6977
    85 Ruiz-López J A,Wang Z W,Fernández-Toledano J C,et al.Start-up rheometry of highly polydisperse magnetorheological fluids:Experiments and simulations.Rheol Acta,2016,55:245-256
    86 Haik Y,Chen J C,Pai V M.Development of biomagnetic fluid dynamics.Inter Symp Trans Proper Thermal Fluids Eng,1996,25:121-126
    87 Tzirtzilakis E E.A mathematical model for blood flow in magnetic field.Phys Fluids,2005,17:077103
    88 Türk?,Bozkaya C,Tezer-Sezgin M.A FEM approach to biomagnetic fluid flow in multiple stenosed channels.Comput Fluids,2014,97:40-51
    89 Sharifi A,Motlagh S Y,Badfar H.Ferro hydro dynamic analysis of heat transfer and biomagnetic fluid flow in channel under the effect of two inclined permanent magnets.J Magn Magn Mater,2019,472:115-122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700