用户名: 密码: 验证码:
熏蒸剂溴甲烷对农田土壤微生物的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of the fumigant methyl bromide on farmland soil microbial community structure and ecological processes
  • 作者:李昌宁 ; 李建宏 ; 姚拓 ; 徐万里 ; 冉福 ; 张建贵 ; 李琦
  • 英文作者:LI Changning;LI Jianhong;YAO Tuo;XU Wanli;RAN Fu;ZHANG Jiangui;LI Qi;College of Prataculture,Gansu Agricultural University;Key Laboratory of Grassland Ecosystem,Ministry of Education;Zhenyuan Center of Agricultural Technology Extension;
  • 关键词:溴甲烷 ; 熏蒸 ; 土壤微生物 ; PLFA ; 微生物呼吸
  • 英文关键词:methyl bromide;;fumigation;;soil microorganism;;PLFA;;microbial respiration
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:甘肃农业大学草业学院;草业生态系统教育部重点实验室;镇原县农业技术推广中心;
  • 出版日期:2018-11-05 09:05
  • 出版单位:生态学报
  • 年:2019
  • 期:03
  • 基金:草业生态系统教育部重点实验室暨甘肃省草学优势学科开放课题(2017-M-03);; 甘肃农业大学人才专项项目(2017RCZX-04)
  • 语种:中文;
  • 页:236-243
  • 页数:8
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S154.3
摘要
土壤微生物是反应土壤健康状况最敏感的生物学指标,溴甲烷残留不仅消耗臭氧层,影响生态平衡,还会造成土壤质量恶化和微生物群落结构的变化。为明确溴甲烷对农田土壤微生物群落结构及生态过程的影响,以兰州市红古区连续两年种植草莓的土壤为研究对象,测定熏蒸剂溴甲烷处理后土壤微生物量碳、基础呼吸、诱导呼吸和微生物代谢熵等相关指标,并运用磷脂脂肪酸法(PLFA)测定不同类群微生物的变化。结果表明:经溴甲烷熏蒸处理至培养结束(第90天)时土壤微生物基础呼吸和诱导呼吸分别下降0.6%和16.2%,并且与对照皆差异显著(P <0.05);微生物量碳培养结束时与对照差异显著(P <0.05),且减少5.6%;总体上微生物基础呼吸、诱导呼吸和微生物量碳都呈现先下降后逐渐恢复的趋势;微生物代谢熵(q CO_2)第15天后都高于对照,但随培养时间延长,处理组和对照组的差值逐渐降低,到培养期结束仍未恢复,相差5.1%。溴甲烷对土壤细菌(B)、真菌(F)和革兰氏阴性菌(GN)、革兰氏阳性菌(GP)都存在抑制作用; B、F含量分别较对照下降0.64%—8.72%、0.03%—5.61%;到培养期结束时,GP的量下降0.26%,GN下降10.42%,GN对溴甲烷的敏感性强于GP,且GN的变化具有滞后性;溴甲烷处理降低了B/F和GN/GP,但对GN/GP影响比对B/F的更为显著,土壤微生物压力指数增加。综上,说明施用溴甲烷使农田土壤微生物受到了长期的、持续的外源压力胁迫,溴甲烷在对有害微生物杀死的同时,也对有益微生物造成极大的伤害,不利于土壤优良性状的保持,使土壤中微生物丰富度和多样性下降。因此,实际应用中应充分考虑溴甲烷对土壤微生物带来的负面影响。
        Methyl bromide is a commonly used insecticide and fungicide,which is typically used for the fumigation of farmland soil. Methyl bromide residues not only deplete the ozone layer and affect ecological balance but also contribute to the deterioration of soil quality and changes in the community structure of soil microorganisms,which are sensitive biological indicators of soil health. In order to clarify the effect of methyl bromide on the microbial community structure and ecological processes in farmland soil,we examined soil planted with strawberry in the Hong-gu District of Lanzhou City over two consecutive years,and measured related indicators such as soil microbial biomass carbon,basic respiration,induced respiration,and microbial metabolic entropy. The mechanisms of different microbial groups were determined using the phospholipid fatty acid( PLFA) method. The results indicated that over a culture period of 90 days following methyl bromide fumigation treatment,microbial basal respiration and induced respiration decreased by 0. 6% and 16. 2%,respectively,which were significantly different from the control values( P < 0. 05). At the end of the microbial carbon culture,there was a 5.6% decrease in biomass carbon,which was significantly different from the control value( P < 0.05).Generally,microbial basal respiration,induced respiration,and microbial biomass carbon all showed a trend of gradual recovery after an initial decline,and microbial metabolic entropy( q CO_2) was higher than that of the control on the 15 th day. However,the difference between the treatment group and the control group decreased gradually with the prolongation of culture time,although it had still not recovered at the end of the culture period,the difference being 5.1%. Methyl bromide has inhibitory effects on soil bacteria( B),fungi( F),gram-negative bacteria( GN),and gram-positive bacteria( GP).The soil contents of bacteria and fungi decreased by 0. 64%—8. 72% and 0. 03%—5. 61% respectively,in response to methyl bromide treatment. By the end of the training period,the amounts of GP and GN had decreased by 0. 26% and10.42%,respectively. The sensitivity of GN to methyl bromide was stronger than that of GP,although the change in GN was delayed. Methyl bromide treatment reduced both B/F and GN/GP ratios,although the effect on the GN/GP ratio was more significant than that on the B/F ratio,and there was an increase in the soil microbial pressure index. In summary,our findings indicate that the application of methyl bromide exerts long-term and persistent exogenous pressure stress on farmland soil microorganisms. Methyl bromide kill harmful microorganisms,and also cause considerable harm to beneficial microorganism,which is unfavorable to the maintenance of favorable soil conditions and decreases the richness and diversity of microorganisms in the soil. Accordingly,the negative effects of methyl bromide on soil microorganisms should be fully considered in practical applications.
引文
[1]吴孔明.中国农作物病虫害防控科技的发展方向.农学学报,2018,8(1):35-38.
    [2]Hsieh H S,Pignatello J J.Modified carbons for enhanced nucleophilic substitution reactions of adsorbed methyl bromide.Applied Catalysis B:Environmental,2018,233:281-288.
    [3]李雄亚,曹坳程.国内外溴甲烷必要用途豁免趋势发展.中国蔬菜,2017,(11):7-9.
    [4]Mayfield E N,Norman C S.Moving away from methyl bromide:political economy of pesticide transition for California strawberries since 2004.Journal of Environmental Management,2012,106:93-101.
    [5]Johnson J A,Walse S S,Gerik J S.Status of alternatives for methyl bromide in the United States.Outlooks on Pest Management,2012,23(2):53-58.
    [6]Yang Q,Lei A P,Li F L,Liu L N,Zan Q J,Shin P K S,Cheung S G,Tam N F Y.Structure and function of soil microbial community in artificially planted Sonneratia apetala and S.caseolaris forests at different stand ages in Shenzhen Bay,China.Marine Pollution Bulletin,2014,85(2):754-763.
    [7]Shi Y,Grogan P,Sun H B,Xiong J B,Yang Y F,Zhou J Z,Chu H Y.Multi-scale variability analysis reveals the importance of spatial distance in shaping Arctic soil microbial functional communities.Soil Biology and Biochemistry,2015,86:126-134.
    [8]Ye X L,Dong F,Lei X Y.Microbial resources and ecology-microbial degradation of pesticides.Natural Resources Conservation and Research,2018,1(1):22-28.
    [9]Becerra-Castro C,Lopes A R,Vaz-Moreira I,Silva E F,Manaia C M,Nunes O C.Wastewater reuse in irrigation:a microbiological perspective on implications in soil fertility and human and environmental health.Environment International,2015,75:117-135.
    [10]Shennan C,Muramoto J,Koike S,Baird G,Fennimore S,Samtani J,Bolda M,Dara S,Daugovish O,Lazarovits G,Butler D,Rosskopf E,Kokalis-Burelle N,Klonsky K,Mazzola M.Anaerobic soil disinfestation is an alternative to soil fumigation for control of some soilborne pathogens in strawberry production.Plant Pathology,2018,67:51-66.
    [11]裴赛峰,张昀.吹扫捕集-气相色谱/质谱法测定饮用水中的10种三卤甲烷.中国卫生检验杂志,2018,28(11):1299-1302+1305.
    [12]曹坳程,刘晓漫,郭美霞,王秋霞,李园,欧阳灿彬,颜冬冬.作物土传病害的危害及防治技术.植物保护,2017,43(2):6-16.
    [13]Zaady E,Ben-David E A,Sher Y,Tzirkin R,Nejidat A.Inferring biological soil crust successional stage using combined PLFA,DGGE,physical and biophysiological analyses.Soil Biology and Biochemistry,2010,42(5):842-849.
    [14]李欣玫,左易灵,薛子可,张琳琳,赵丽莉,贺学礼.不同荒漠植物根际土壤微生物群落结构特征.生态学报,2018,38(8):2855-2863.
    [15]吴小虎.氟磺胺草醚对土壤微生物多样性的影响[D].北京:中国农业科学院,2014.
    [16]卢虎.祁连山不同退化草地土壤微生物特性研究[D].兰州:甘肃农业大学,2015.
    [17]立天宇,康峰峰,韩海荣,高晶,宋小帅,于舒.冀北辽河源自然保护区土壤微生物碳代谢特征对凋落物分解主场效应的响应.应用生态学报,2015,26(7):2159-2166.
    [18]Li W T,Wu M,Liu M,Jiang C Y,Chen X F,Kuzyakov Y,Rinklebe J,Li Z P.Responses of soil enzyme activities and microbial community composition to moisture regimes in paddy soils under long-term fertilization practices.Pedosphere,2018,28(2):323-331.
    [19]韦应莉,曹文侠,李建宏,张爱梅,李小龙,马周文.不同放牧与围封高寒灌丛草地土壤微生物群落结构PLFA分析.生态学报,2018,doi:10.5846/stxb201706301182.
    [20]Hammesfahr U,Heuer H,Manzke B,Smalla K,Thiele-Bruhn S.Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils.Soil Biology and Biochemistry,2008,40(7):1583-1591.
    [21]Gullino M L,Camponogara A,Gasparrini G,Rizzo V,Clini C,Garibaldi A.Replacing methyl bromide for soil disinfestation:the ltalian experience and implications for other countries.Plant Disease,2003,87(9):1012-1021.
    [22]张成霞,南志标.土壤微生物生物量的研究进展.草业科学,2010,27(6):50-57.
    [23]燕平梅,乔宏萍,赵文婧,陈燕飞,单树花,曹坳程.溴甲烷熏蒸对土壤反硝化作用及nos Z型反硝化微生物群落结构的影响.微生物学报,2015,55(1):73-79.
    [24]Tanaka S,Kobayashi T,Iwasaki K,Yamane S,Maeda K,Sakurai K.Properties and metabolic diversity of microbial communities in soils treated with steam sterilization compared with methyl bromide and chloropicrin fumigations.Soil Science and Plant Nutrition,2003,49(4):603-610.
    [25]周焱,徐宪根,王丰,阮宏华,汪家社,方燕鸿,吴焰玉,徐自坤.武夷山不同海拔梯度土壤微生物生物量、微生物呼吸及其商值(q MB,q CO2).生态学杂志,2009,28(2):265-269.
    [26]沈萍,陈向东.微生物学(第八版).北京:高等教育出版社,2016:126-129.
    [27]罗玮,姜宏亮,马浩.一株乙草胺降解菌的分离及其降解特性研究.微生物学通报,2016,43(12):2678-2685.
    [28]Li J,Huang B,Wang Q X,Li Y,Fang W S,Han D W,Yan D D,Guo M X,Cao A C.Effects of fumigation with metam-sodium on soil microbial biomass,respiration,nitrogen transformation,bacterial community diversity and genes encoding key enzymes involved in nitrogen cycling.Science of the Total Environment,2017,598:1027-1036.
    [29]Liu J,Xia H J,Wang J Z,Zhang W L.Bioactive characteristics of soil microorganisms in different-aged orange(citrus reticulate)plantations.Agricultural Science&Technology,2012,13(6):1277-1281,1286-1286.
    [30]张红,吕永龙,辛晓云,史艳飞,明宾.杀虫剂类POPs对土壤中微生物群落多样性的影响.生态学报,2005,25(4):937-942.
    [31]Jiang J D,Li S P.Microbial Degradation of chemical pesticides and bioremediation of pesticide-contaminated sites in China//Luo Y M,Tu C,eds.Twenty Years of Research and Development on Soil Pollution and Remediation in China.Singapore:Springer,2018:655-670.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700