用户名: 密码: 验证码:
旋转条件下AP/HTPB二维火焰结构的数值分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of 2D AP/HTPB Flame Structure Under Spinning Conditions
  • 作者:叶振威 ; 余永刚
  • 英文作者:YE Zhen-wei;YU Yong-gang;School of Energy and Power Engineering,Nanjing University of Science and Technology;
  • 关键词:高氯酸铵/端羟基聚丁二烯(AP/HTPB) ; 复合固体推进剂 ; 数值模拟 ; 旋转 ; 火焰结构
  • 英文关键词:ammonium perchlorate/hydroxyl terminated polybutadiene(AP/HTPB);;composite solid propellant;;numerical simulation;;spinning;;flame structure
  • 中文刊名:含能材料
  • 英文刊名:Chinese Journal of Energetic Materials
  • 机构:南京理工大学能源与动力工程学院;
  • 出版日期:2018-07-06 15:05
  • 出版单位:含能材料
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金资助(51176076)
  • 语种:中文;
  • 页:11-18
  • 页数:8
  • CN:51-1489/TK
  • ISSN:1006-9941
  • 分类号:TJ410
摘要
为了研究底排推进剂高氯酸铵/端羟基聚丁二烯(AP/HTPB)旋转条件下微尺度燃烧特性,建立了AP/HTPB二维周期性三明治定常旋转燃烧模型,气相采用两步总包反应,耦合气固热边界层,拟合旋转动量,并对燃烧压力为0.1~5 MPa,转速0~10800 r·min~(-1)条件下的二维火焰结构进行了数值模拟。结果表明,转速在10200 r·min~(-1)的工况下,当燃烧压力为0.1~0.5 MPa时,火焰呈预混燃烧特性;当燃烧压力为0.5~3.5 MPa时,火焰呈现扩散、预混燃烧双重特性;当燃烧压力大于3.5 MPa时,形成狭长的扩散化学反应带。分别针对不同燃烧压力和不同转速下的稳态燃烧过程进行了数值分析,得知气相火焰偏转角与压力呈线性正相关;转速在0~10200 r·min~(-1)之间时气相火焰偏转角与转速呈线性增长,但是当转速在10200~10800 r·min~(-1)时,气相火焰偏转角与转速近似呈指数增长。燃面平均雷诺数的变化趋势与气相火焰偏转角度基本一致,因此可以通过燃面平均雷诺数来描述旋转与压力对气相火焰偏转角度的影响。
        To research the micro-scale combustion characteristics of base bleed propellant ammonium perchlorate/hydroxyl termi-nated polybutadiene(AP/HTPB)under spinning condition,a two-dimensional periodic sandwich steady rotating combustion mod-el of AP/HTPB was established. The gas phase adopts the two-step total reaction,coupled the gas-solid heat boundary layer,fitted the spinning momentum,and the two-dimensional flame structure under the conditions of combustion pressure of 0.1-5.0 MPa and spinning speed of 0-10800 r·min~(-1) were numerically simulated. Results show that under the working condition of spinning speed as 10200 r·min~(-1) when the combustion pressure is 0.1-0.5 MPa,the flame shows premixed combustion characteristics.When the combustion pressure is 0.5-3.5 MPa,the flame presents the dual characteristics of diffusion and premixed combus-tion. When the pressure is more than 3.5 MPa,a narrow diffusion chemical reaction zone is formed. The numerical analysis is carried out on steady combustion process at different combustion pressures and different spinning speeds. It is found that the de-flecting angle of gas flame is linearly positive with the pressure. When the spinning speed is between 0-10200 r·min~(-1),deflect-ing angle and spinning speed of gas flame show a linear increase. However,when the spinning speed is between 10200-10800 r· min~(-1),the deflection angle of gas flame approximately shows an exponential growth with the spinning speed. The variation trend of the average Reynolds number of the combustion surface is basically the same as deflecting angle of the gas flame. There-fore,the average Reynolds number of the combustion surface can be used to describe the influence of the spinning and pressure on the deflecting angle of the gas phase flame.
引文
[1]张炎清.底部排气弹底排装置旋转效应研究[J].兵工学报,1988,(S1):73-77.ZHANG Yan-qing.Spinning effect of the base bleed motors in base bleed projectiles[J].Acta Armamentarii,1988,(S1):73-77.
    [2]商国云,吴玉斌,李奎武.底排装药在高速旋转状态下燃速数学模型的探讨[J].弹箭与制导学报,1993(1):52-58.SHANG Guo-yun,WU Yu-fu,LI Kui-wu.Discussion on burn-ing rate mathematical model of base bleed peopellant at high speed rotation[J].Journal of Projectiles,Rockets,Missiles and Guidance,1993(1):52-58.
    [3]陆春义,周彦煌,余永刚.高降压速率下复合底排药剂瞬变燃烧特性研究[J].含能材料,2007,15(6):587-591.LU Chun-yi,ZHOU Yan-huang,YU Yong-gang.Combustion of composite base bleed charge under rapid depressurization[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2007,15(6):587-591.
    [4]Beckstead M W,Derr R L,Price C F.A model of composite solid-propellant combustion based on multiple flames[J].AIAA Journal,1970,8(12):2200-2207.
    [5]杨月诚,周志清,周伟,等.基于BDP多火焰模型的简化复合固体推进剂燃烧数值分析[J].固体火箭技术,2010,33(02):185-190.YANG Yue-cheng,ZHOU Zhi-qing,ZHOU Wei,et al.Nu-merical analysis on combustion process of simplified compos-ite solid propellant based on BDP multi-flames model[J].Journal of Solid Rocket Technology,2010,33(02):185-190.
    [6]Hegab A M,Sait H H,Hussain A,et al.Numerical modeling for the combustion of simulated solid rocket motor propellant[J].Computers&Fluids,2014,89(02):29-37.
    [7]Isert S,Connell T L,Risha G A,et al.Near-surface flame structure characterization of simplified ammonium perchlorate/hydroxyl-terminated polybutadiene compositions[J].Combustion and Flame,2016,164:201-211.
    [8]马龙泽,余永刚.AP/HTPB推进剂微尺度燃烧特性的数值分析[J].含能材料,2017,25(3):178-183.MA Long-ze,YU Yong-gang.Numerical simulation of micro-scale combustion characteristics of AP/HTPB propellant[J].Chinese Journal of Energetic Materials(Hanneng Cailiao),2017,25(3):178-183.
    [9]Knott G M,Brewster M Q.Modeling the combustion of pro-pellant sandwiches[J].Combustion Science and Technology,2002,174(4):61-90.
    [10]Wang X,Jackson T L,Massa L.Numerical simulation of het-erogeneous propellant combustion by a level set method[J].Combustion Theory and Modelling,2004,8(2):227-254.
    [11]王革,陈亮,郜冶,等.旋转对固体火箭发动机燃烧室燃气流动的影响[J].空气动力学学报,2008,26(2):208-211.WANG Ge,CHEN Liang,GAO Ye,et al.Spinning effect on the flow of exhaust gas in combustion chamber of a solid rock-et motor[J].Acta Aerodynamica Sinica,2008,26(2):208-211.
    [12]Surzhikov S,Murphy J,Krier H.2D model for unsteady burn-ing heterogeneous AP/binder solid propellants[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2000:16-19.
    [13]Jackson T L,Buckmaster J.Heterogeneous Propellant Combus-tion[J].AIAA Journal,2002,40(6):1122-1130.
    [14]Kohga M.Burning characteristics and thermochemical behav-ior of AP/HTPB composite propellant using coarse and fine APparticles[J].Propellants,Explosives,Pyrotechnics,2011,36(1):57-64.
    [15]郭锡福.底部排气弹外弹道学[M].北京:国防工业出版社,1995:46-59.GUO Xi-fu.Exterior ballistics of base bleed projectiles[M].Bei-jing:National Defense Industry Press,1995:46-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700