用户名: 密码: 验证码:
水盐梯度对闽江河口湿地土壤水稳性团聚体分布及稳定性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of hydrologic and salinity gradients on the distribution and stability of wetland soil water-stable aggregates in the Min River estuary
  • 作者:王纯 ; 陈晓旋 ; 陈优阳 ; 牟晓杰 ; 万斯昂 ; 刘兴土 ; 仝川
  • 英文作者:WANG Chun;CHEN Xiaoxuan;CHEN Youyang;MOU Xiaojie;WAN Si′ang;LIU Xingtu;TONG Chuan;Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Institute of Geography, Fujian Normal University;Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences;
  • 关键词:盐度 ; 淹水环境 ; 水稳性团聚体 ; 稳定性 ; 闽江河口
  • 英文关键词:salinity;;flooding environment;;soil water-stable aggregates;;stability;;Min River estuary
  • 中文刊名:环境科学学报
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:福建师范大学地理研究所福建师范大学湿润亚热带生态地理过程教育部重点实验室;中国科学院东北地理与农业生态研究所中国科学院湿地生态与环境重点实验室;
  • 出版日期:2019-09-18
  • 出版单位:环境科学学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金(No.41901111);; 国家重点基础研究发展计划课题(No.2013CB430401);; 中国博士后科学基金(No.2017M611337)
  • 语种:中文;
  • 页:281-289
  • 页数:9
  • CN:11-1843/X
  • ISSN:0253-2468
  • 分类号:X171
摘要
为了揭示水盐梯度对河口湿地土壤水稳性团聚体分布及稳定性的影响,对闽江河口不同淹水环境和盐度下短叶茳芏(Cyperus malaccensis)湿地土壤水稳性团聚体进行了测定与分析.结果表明:①闽江河口半咸水湿地和淡水湿地0~30 cm土壤粉+黏团聚体、微团聚体和大团聚体的含量分别为63.12%~77.49%、6.82%~31.64%、4.38%~22.63%.除20~30 cm土层外,高潮滩0~20 cm土壤粉+黏团聚体和大团聚体含量均随盐度的增加而增加,增幅分别为8.74%~9.85%和105.54%~144.40%;0~20 cm土壤微团聚体含量均随盐度的增加而降低,高潮滩降幅为59.56%~65.20%,低潮滩降幅为55.65%~60.92%.②高潮滩土壤团聚体稳定性随盐度的增加而增加,盐度对微团聚体、大团聚体含量(DR_(0.25))和平均重量直径(MWD)的作用力在不同土层均影响显著,盐度和淹水的交互作用对各级土壤水稳性团聚体分布及稳定性的影响均不显著.③土壤团聚体稳定性与土壤TC含量呈倒"U"型关系.综上,淹水环境变化对土壤水稳性团聚体分布及稳定性的影响较小,盐度和有机碳含量是影响闽江河口湿地土壤水稳性团聚体分布及稳定性的重要限制性参数.
        In order to reveal the effects of hydrologic and salinity gradients on the distribution and stability of wetlands soil water-stable aggregates in estuarine area, the contents of soil water-stable aggregate-size fractions were determined along a hydrologic gradient within a freshwater Cyperus malaccensis marsh and a brackish C. malaccensis marsh in the Min River estuary. The contents of soil silt and clay aggregates, microaggregates and macroaggregates at a soil depth of 0~30 cm in the brackish and freshwater marsh were 63.12%~77.49%, 6.82%~31.64%, and 4.38%~22.63%, respectively. Except that at 20~30 cm depth, the contents of silt+clay aggregates and macroaggregates at 0~20 cm depth in high tidal flat raised with increasing salinity, and increasing ranges were 8.74%~9.85% and 105.54%~144.40%, respectively. While for both high tidal flat and low tidal flat, the contents of microaggregates at 0~20 cm depth decreased by 59.56%~65.20% and 55.65%~60.92% with increasing salinity in high and low tidal flat, respectively. The stability of soil aggregates in high tidal flat raised with increasing salinity. The effects of salinity on the contents(DR_(0.25)) and mean weight diameter(MWD) of macroaggregates are significant. however, effects of the interaction of salinity and flooding environment on the distribution and stability of soil water-stable aggregate-size fractions among soil layers are insignificant. The relationship between the stability of soil aggregates and soil total carbon contents shows as an inverted "U" shape. In summary, compared with the varied flooding environment, soil salinity and organic carbon content are the important restrictive parameters, demonstrating an obvious effect on controlling the distribution and stability of soil water-stable aggregates in the tidal marsh of the Min River estuary.
引文
Alag?z Z,Yi˙lmaz E.2009.Effects of different sources of organic matter on soil aggregate formation and stability:a laboratory study on a Lithic Rhodoxeralf from Turkey[J].Soil and Tillage Research,103(2):419-424
    Barreto R C,Madari B E,Maddock J E L,et al.2009.The impact of soil management on aggregation,carbon stabilization and carbon loss as CO2 in the surface layer of a Rhodic Ferralsol in Southern Brazil[J].Agriculture,Ecosystems and Environment,132(3):243-251
    Bischoff N,Mikutta R,Shibistova O,et al.2017.Limited protection of macro-aggregate-occluded organic carbon in siberian steppe soils[J].Biogeosciences,14(10):2627-2640
    Bossuyt H,Six J,Hendrix P F.2005.Protection of soil carbon by microaggregates within earthworm casts[J].Soil Biology and Biochemistry,37(2):251-258
    Bronick C J,Lal R.2005.Soil structure and management:a review[J].Geoderma,124(1):3-22
    Cambardella C A,Elliott E T.1994.Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils[J].Soil Science Society of America Journal,58(1):123-130
    Chambers L G,Osborne T Z,Reddy K R.2013.Effect of salinity pulsing events on soil organic carbon loss across an intertidal wetland gradient:a laboratory experiment[J].Biogeochemistry,115(1):363-383
    Chenu C,Plante A F.2010.Clay-sized organo-mineral complexes in a cultivation chronosequence:revisiting the concept of the ‘primary organo-mineral complex’[J].European Journal of Soil Science,57(4):596-607
    Colmer T D,Pedersen O,Wetson A M,et al.2013.Oxygen dynamics in a saltmarsh soil and in Suaeda maritima during tidal submergence[J].Environmental and Experimental Botany,92:73-82
    杜荣骞.2003.生物统计学(第2版)[M].北京:高等教育出版社
    Erktan A,Balmot J,Merino-Martín L,et al.2017.Immediate and long-term effect of tannins on the stabilization of soil aggregates[J].Soil Biology and Biochemistry,105:197-205
    Ge Z M,Wang H,Cao H B,et al.2016.Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes[J].Scientific Reports,6(1):28466
    Han L,Sun K,Jin J,et al.2016.Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J].Soil Biology and Biochemistry,94:107-121
    Holthusen D,Peth S,Horn R.2010.Impact of potassium concentration and matric potential on soil stability derived from rheological parameters[J].Soil and Tillage Research,111(1):75-85
    IPCC.2013.Summary for Policymakers//Stocker T,Qin D,Plattner G K,et al.2013.Climate Change:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge and New York:Cambridge University Press
    Julkowska M M,Testerink C.2015.Tuning plant signaling and growth to survive salt[J].Trends in Plant Science,20:586-594
    Keller J K.2011.Wetlands and the global carbon cycle:what might the simulated past tell us about the future?[J].New Phytologist,192(4):789-792
    Kirwan M L,Megonigal J P.2013.Tidal wetland stability in the face of human impacts and sea-level rise[J].Nature,504(7478):53-60
    Kvarno S H,Oygarden L.2006.The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway[J].Catena,67(3):175-182
    刘剑秋,曾从盛,陈宁.2006.闽江河口湿地研究[M].北京:科学出版社
    Lunau M,Voss M,Erickson M,et al.2013.Excess nitrate loads to coastal waters reduces nitrate removal efficiency:mechanism and implications for coastal eutrophication[J].Environmental Microbiology,15(5):1492-1504
    马帅,赵世伟,李婷,等.2011.子午岭林区植被自然恢复下土壤剖面团聚体特征研究[J].水土保持学报,25(2):157-161
    马雪莹,叶思源,丁玉荣,等.2014.辽河三角洲湿地土壤团聚体、颗粒有机质及其碳浓度分布特征[J].中国农学通报,30(34):171-177
    Márquez C O,Garcia V J,Cambardella C A,et al.2004.Aggregate-size stability distribution and soil stability[J].Soil Science Society of America Journal,68(3):725-735
    Morrissey E M,Gillespie J L,Morina J C,et al.2014.Salinity affects microbial activity and soil organic matter content in tidal wetlands[J].Global Change Biology,20(4):1351-1362
    Mou X J,Liu X T,Tong C,et al.2014.Responses of CH4 emissions to nitrogen addition and Spartina alterniflora invasion in Minjiang River estuary,southeast of China[J].Chinese Geographical Science,24(5):562-574
    Nichols K A,Toro M A.2011.Whole soil stability index(WSSI)for evaluating soil aggregation[J].Soil and Tillage Research,111(2):99-104
    Painuli D K,Pagliali M.1990.Effect of polyvinyl alcohol,dextran and humic acid on some physical properties of a clay and loam soil.I.Cracking and aggregate stability[J].Agrochimica,34:117-130
    Peng X H,Zhu Q H,Zhang Z B,et al.2017.Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers[J].Soil Biology and Biochemistry,109:81-94
    秦胜金,刘景双,丁洪,等.2009.冻融对沼泽湿地土壤水稳性大团聚体的影响[J].水土保持通报,29(6):115-118
    Rachman A,Anderson S H,Gantzer C J,et al.2003.Influence of long-term cropping systems on soil physical properties related to soil erodibility[J].Soil Science Society of America Journal,67(2):637-644
    Schuerch M,Spencer T,Temmerman S,et al.2018.Future response of global coastal wetlands to sea-level rise[J].Nature,561(7722):231-234
    史奕,陈欣,沈善敏.2002.有机胶结形成土壤团聚体的机理及理论模型[J].应用生态学报,13(11):1495-1498
    Six J,Conant R T,Paul E A,et al.2002.Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils[J].Plant and Soil,241(2):155-176
    Soinne H,Hyv?luoma J,Ketoja E,et al.2016.Relative importance of organic carbon,land use and moisture conditions for the aggregate stability of post-glacial clay soils[J].Soil and Tillage Research,158:1-9
    Str?m L,Christensen T R.2007.Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland[J].Soil Biology and Biochemistry,39(7):1689-1698
    Tian J,Pausch J,Yu G Y,et al.2015.Aggregate size and their disruption affect 14C-labeled glucose mineralization and priming effect[J].Applied Soil Ecology,90:1-10
    田慎重,王瑜,李娜,等.2013.耕作方式和秸秆还田对华北地区农田土壤水稳性团聚体分布及稳定性的影响[J].生态学报,33(22):7116-7124
    Tisdall J M,Oades J M.1982.Organic matter and water-stable aggregates in soils[J].European Journal of Soil Science,33(2):141-163
    Tong C,Cadillo-Quiroz H,Zeng Z H,et al.2017.Changes of community structure and abundance of methanogens in soils along a freshwater-brackish water gradient in subtropical estuarine marshes[J].Geoderma,299:101-110
    仝川,曾从盛,王维奇,等.2009.闽江河口芦苇潮汐湿地甲烷通量及主要影响因子[J].环境科学学报,29(1):207-216
    von Lützow M,K?gel-Knabner I,Ekschmitt K,et al.2007.SOM fractionation methods:relevance to functional pools and to stabilization mechanisms.Soil Biology and Biochemistry,39(9):2183-2207
    王小红,杨智杰,刘小飞,等.2016.中亚热带山区土壤不同形态铁铝氧化物对团聚体稳定性的影响[J].生态学报,36(9):2588-2596
    Wilson B J,Mortazavi B,Kiene R P.2015.Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary[J].Biogeochemistry,123(3):329-347
    Wright A L,Inglett P W.2009.Soil organic carbon and nitrogen and distribution of carbon-13 and nitrogen-15 in aggregates of Everglades Histosols[J].Soil Science Society of America Journal,73(2):427-433
    Xiao L,Zhang Y,Li P,et al.2019.Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and Chinese pine forest on the loess plateau[J].Geoderma,334:1-8
    徐爽,王益权,王浩,等.2012.不同肥力水平土壤团聚体的稳定性及对氮肥盐溶液的响应[J].植物营养与肥料学报,18(5):1135-1143
    Zhang S L,Wang R J,Yang X Y,et al.2016.Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol[J].Scientific Reports,6:1-11
    Zhang X C,Norton L D.2002.Effect of exchangeable Mg on saturated hydraulic conductivity,disaggregation and clay dispersion of disturbed soils[J].Journal of Hydrology,260(1):194-205
    Zhao J S,Chen S,Hu R G,et al.2017.Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter,and iron and aluminum oxides[J].Soil and Tillage Research,167:73-79
    中国科学院南京土壤研究所.1978.土壤理化分析[M].上海:上海科学技术出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700