用户名: 密码: 验证码:
鄱阳湖重金属Cu的运动足迹研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the movement footprint of heavy metal copper in Poyang Lake
  • 作者:周闪闪 ; 王华 ; 刘晓晖 ; 闫怀宇 ; 方少文 ; 邓燕青 ; 王仕刚
  • 英文作者:ZHOU Shan-shan;WANG Hua;LIU Xiao-hui;YAN Huai-yu;FANG Shao-wen;DENG Yan-qing;WANG Shi-gang;College of Environment, Hohai University;Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University;Shanghai Waterway Engineering Design and Consulting Co., Ltd.;Jiangxi Hydrological Bureau;Poyang Lake Hydrological Bureau;
  • 关键词:通江湖泊 ; 鄱阳湖 ; 重金属 ; 粒子追踪模型 ; 湖流形态
  • 英文关键词:river-connected lake;;Poyang Lake;;heavy metal;;particle tracing model;;lacustrine flow pattern
  • 中文刊名:中国环境科学
  • 英文刊名:China Environmental Science
  • 机构:河海大学环境学院;河海大学浅水湖泊综合治理与资源开发教育部重点实验室;中交上海航道勘察设计研究院有限公司;江西省水文局;鄱阳湖水文局;
  • 出版日期:2019-09-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:09
  • 基金:长江科学院开放基金资助项目(CKWV2017504/KY)
  • 语种:中文;
  • 页:407-416
  • 页数:10
  • CN:11-2201/X
  • ISSN:1000-6923
  • 分类号:X524
摘要
选取我国典型的通江湖泊——鄱阳湖作为研究区域,采用MIKE21水动力模型耦合粒子追踪模型,模拟在重力型、顶托型、倒灌型3种不同湖流形态下鄱阳湖中重金属Cu的运动足迹.结果显示:(1)1月(重力型),长江下游处重金属运动速率最快,为2.111km/d,粒子一直沿着由北向南的方向运动至湖区中心的西北方向,之后突然改变运动方向;5月(顶托型),长江上游处重金属运动速率最大,达到2.901km/d;8月(倒灌型),与顶托型类似,长江上游处重金属运动速率最快,为3.287km/d.(2)从各支流重金属整体的运动情况来看,鄱阳湖水位受到五河来水及长江倒灌的影响,各点源重金属在湖区的运动足迹受顶托型和倒灌型湖流形态作用的影响较大,长江上、下游处重金属在不同湖流的影响下流速均较大,受湖流形态影响最小的是抚河的2个支流,粒子运动速率表现为:倒灌型>顶托型>重力型.
        In this paper, the typical lake of river-connected lake in China, Poyang Lake, is selected as the research area. The MIKE21 hydrodynamic model coupled with particle tracing model is used to simulate the movement footprint of heavy metal Cu in Poyang Lake under three different flow patterns of gravity type, top support type and inverted irrigation type. The simulation results showed that:(1) In January(gravity type), the heavy metal movement rate in the lower reaches of the Yangtze River was the fastest, at 2.111 km/d. The particles moved along the north-south direction to the northwest direction of the center of the lake area, and then suddenly change its direction of movement. In May(top support type), the rate of heavy metal movement in the upper reaches of the Yangtze River was the highest, reaching 2.901 km/d. In August(inverted type), similar to the top support type, the heavy metal movement rate in the upper reaches of the Yangtze River was the fastest, 3.287 km/d.(2) Judging from the overall movement of heavy metals in each tributary, the water level of Poyang Lake was affected by the water from the five rivers and the backwater of the Yangtze River. The movement footprint of heavy metals in different point sources in the lake area was greatly affected by the shape of the top-supporting type and the inverted-flow type. The flow of heavy metals in the upper and lower reaches of the Yangtze River was relatively large under the influence of different lakes. The two tributaries of Fu River were the least affected by the shape of the lake. The particle motion rate was as follows: inverted type > top support type > gravity type.
引文
[1] Uluturhan E, Kucuksezgin F. Heavy metal contaminants in Red Pandora(Pagellus erythrinus)tissues from the Eastern Aegean Sea,Turkey[J]. Water Research, 2007,41(6):1185-1192.
    [2] Hansen A M. Lake sediment cores as indicators of historical metal(loid)accumulation–A case study in Mexico[J]. Applied Geochemistry, 2012,27(9):1745-1752.
    [3] Thevenon F, Alencastro L F D, Loizeau J L, et al. A high-resolution historical sediment record of nutrients, trace elements and organochlorines(DDT and PCB)deposition in a drinking water reservoir(Lake Bret, Switzerland)points at local and regional pollutant sources[J]. Chemosphere, 2013,90(9):2444-2452.
    [4] Dai L J, Wang L Q, Li L F, et al. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China[J]. Science of the Total Environment, 2018,621:1433-1444.
    [5] Sheikh J A, Jeelani G, Gavali R S, et al. Weathering and anthropogenic influences on the water and sediment chemistry of Wular Lake, Kashmir Himalaya[J]. Environmental Earth Sciences,2014,71(6):2837-2846.
    [6] Yang J, Chen L, Liu L Z, et al. Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai[J].Ecotoxicology and Environmental Safety, 2014,102(1):129-135.
    [7] Zhang H, Wang Z F, Zhang Y L, et al. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai–Tibet highway[J]. Science of the Total Environment, 2015,521–522(521):160-172.
    [8] Yu T, Zhang Y, Meng W, et al. Characterization of heavy metals in water and sediments in Taihu Lake, China[J]. Environmental Monitoring&Assessment, 2012,184(7):4367-4382.
    [9] Xie Z L, Sun Z G, Zhang H, et al. Contamination assessment of arsenic and heavy metals in a typical abandoned estuary wetland—a case study of the Yellow River Delta Natural Reserve[J].Environmental Monitoring&Assessment, 2014,186(11):7211-7232.
    [10] Swarnalatha K, Letha J, Ayoob S, et al. Risk assessment of heavy metal contamination in sediments of a tropical lake[J]. Environmental Monitoring&Assessment, 2015,187(6):322.
    [11] Karim L R, Williams E S. Accumulation of heavy metals in the surface water of Asthamudi lake, Kollam, Kerala[J]. Nature Environment&Pollution Technology, 2015,14(2):431-434.
    [12] Gardner D, Riley J P. Distribution of Dissolved Mercury in the Irish Sea[J]. Nature, 1973,241(5391):526-527.
    [13] Renberg I, Bindler R, Bradshaw E, et al. Sediment evidence of early eutrophication and heavy metal pollution of Lake M?laren, Central Sweden[J]. Ambio, 2001,30(8):496-502.
    [14] Deniseger J, Erickson L J, Austin A, et al. The effects of decreasing heavy metal concentration on the biota of Butle Lake, Vancouver Island, British Columbia[J]. Water Research, 1990,24(4):403-416.
    [15] Makundi I N. A study of heavy metal pollution in Lake Victoria sediments by Energy Dispersive X-Ray Fluorescence[J]. Journal of Environmental Science&Health Part A Toxic/hazardous Substances&Environmental Engineering, 2001,36(6):909-921.
    [16] Yin H B, Gao Y N, Fan C X. Distribution, sources and ecological risk assessment of heavy metals in surface sediments from Lake Taihu,China[J]. Environmental Research Letters, 2011,6(4):4012-4023.
    [17] Li Y L, Yao J. Estimation of Transport Trajectory and Residence Time in Large River–Lake Systems&58; Application to Poyang Lake(China)Using a Combined Model Approach[J]. Water, 2015,7:5203-5223.
    [18] Lu M, Zeng D C, Liao Y, et al. Distribution and characterization of organochlorine pesticides and polycyclic aromatic hydrocarbons in surface sediment from Poyang Lake, China[J]. Science of the Total Environment, 2012,433:491-497.
    [19] You H L, Xu L G, Liu G L, et al. Effects of Inter-Annual Water Level Fluctuations on Vegetation Evolution in Typical Wetlands of Poyang Lake, China[J]. Wetlands, 2015,35(5):931-943.
    [20] Li Z T, Huang H, Zhang M, et al. Econometric Analysis of the Relationship between Economic Growth and Environmental Degradation of the Poyang Lake Basin[J]. Resources Science, 2010,32(2):267-273.
    [21] Wang H, Zhao Y J, Liang D F, et al. 30+year evolution of Cu in the surface sediment of lake Poyang, China[J]. Chemosphere, 2017,168:1604-1612.
    [22]胡利娜,刘小真,周文斌,等.鄱阳湖水域DW采样点底泥重金属垂直污染分析[J].环境科学与技术, 2009,32(6):108-111.Hu L N, Liu X Z, Zhou W B, et al. Heavy Metals Vertical Pollution Analysis of Sediment from DW Sampling Point of Poyang Lake Area[J]. Environmental Science&Technology, 2009,32(6):108-111.
    [23]舒旺,王鹏,肖汉玉,等.鄱阳湖流域乐安河水化学特征及影响因素[J].长江流域资源与环境, 2019,28(3):681-690.Shu W, Wang P, Xiao H Y, et al. Hydrochemical characteristics and influencing factors in the Le'an River, Poyang Lake basin[J].Resources and Environment in the Yangtze Basin, 2019,28(3):681-690.
    [24]杨期勇,曾明,谢琪,等.鄱阳湖北部湖区沉积物重金属分布及其潜在生态风险评价[J].生态环境学报, 2018,27(3):556-564.Yang Q Y, Zeng M, Xie Q, et al. The distribution of heavy metals and potential ecological risk in the northern Poyang Lake[J]. Ecology and Environment Sciences, 2018,27(3):556-564.
    [25]张莉,袁丽娟,张大文,等.鄱阳湖丰水期悬浮颗粒物重金属的空间分布格局[J].环境化学, 2017,36(10):2219-2226.Zhang L, Yuan L J, Zhang D W, et al. Spatial variation of heavy metals in suspended particulate matters of Poyang Lake[J].Environmental Chemistry, 2017,36(10):2219-2226.
    [26]李晓红,范静.鄱阳湖湿地沉水植物群落分布特征及其对重金属污染的指示[J].实验室研究与探索, 2018,37(12):38-45.Li X H, Fan J. Distribution of submerged macrophyte community and its indicative function to the sediment heavy metals pollution in the wetland of Poyang Lake[J]. Research and Exploration in Laboratory,2018,37(12):38-45.
    [27]曾慧卿,何宗健,彭希珑.鄱阳湖水质状况及保护对策[J].江西科学,2003,21(3):226-229.Zeng H Q, He Z J, Peng X L. The Study of water quality and the protect measurement in the Poyang Lake[J]. Jiangxi Science,2003,21(3):226-229.
    [28]万金保,蒋胜韬.鄱阳湖水质分析及保护对策[J].江西师范大学学报(自然科学版), 2005,29(3):260-263.Wan J B, Jiang S T. Analysis and protecting countermeasures to water quatic about Poyang Lake[J]. Journal of Jiangxi Normal University(Natural Sciences Edition), 2005,29(3):260-263.
    [29]李冰,杨桂山,万荣荣,等.鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J].长江流域资源与环境, 2017,26(2):289-296.Li B, Yang G S, Wan R R, et al. Temporal variability of water quality in Poyang Lake outlet and the associated water level fluctuations:a water quality sampling revelation[J]. Resources and Environment in the Yangtze Basin, 2017,26(2):289-296.
    [30]王圣瑞.鄱阳湖生态安全[M].北京:科学出版社, 2014:1-409.Wang S R. Poyang Lake Ecological Security[M]. Beijing:Science Press, 2014:1-409.
    [31]钱位成,林美琪,徐爱琴,等.鄱阳湖底质中重金属的分布和评价[J].环境科学丛刊, 1985,6(7):47-54.Qian W C, Lin M Q, Xu A Q, et al. Distribution and evaluation of heavy metals in the sediment of Poyang Lake[J]. Environmental science, 1985,6(7):47-54.
    [32]陈静生,董林,邓宝山,等.Cu在沉积物各相中分配的实验模拟与数值模拟研究——以鄱阳湖为例[J].环境科学学报, 1987,7(2):140-149.Chen J S, Dong L, Deng B S, et al. Modeling study on copper partitioning in sediments, a case study of Poyang Lake[J]. Acta Scientiae Circumstantiae, 1987,7(2):140-149.
    [33] Chen J S, Dong L, Deng B S. A study on heavy metal partitioning in sediments from Poyang Lake in China[J]. Hydrobiologia, 1989,176-177(1):159-170.
    [34] Yuan G L, Liu C, Chen L, et al. Inputting history of heavy metals into the inland lake recorded in sediment profiles:Poyang Lake in China[J]. Journal of Hazardous Materials, 2011,185(1):336-345.
    [35]伍恒赟,罗勇,张起明,等.鄱阳湖沉积物重金属空间分布及潜在生态风险评价[J].中国环境监测, 2014,30(6):114-119.Wu H Y, Luo Y, Zhang Q M, et al. Spatial distribution and potential ecological risk assessment of heavy metals in sediments of Poyang Lake[J]. Environmental Monitoring in China, 2014,30(6):114-119.
    [36] Wang M, Hu K, Zhang D, et al. Speciation and spatial distribution of heavy metals(Cu and Zn)in wetland soils of Poyang Lake(China)in wet seasons[J]. Wetlands, 2017,11:1-10.
    [37]任琼,张金池,周莉荫,等.鄱阳湖湿地重金属空间分布特征及分析评价[J].江苏农业科学, 2018,46(8):275-278.Ren Q, Zhang J C, Zhou L Y, et al. Spatial distribution characteristics and analysis of heavy metals in Poyang Lake wetland[J]. Jiangsu Agricultural Sciences, 2018,46(8):275-278.
    [38]马丹丹.鄱阳湖南矶山典型湿地重金属Cu含量及污染评价[J].安徽农业科学, 2019,47(6):82-84.Ma D D. Evaluation on copper pollution in Nanjishan wetland reserve of Poyang Lake[J]. Journal of Anhui Agricultural Sciences, 2019,47(6):82-84.
    [39] Xie Z L, Jiang Y H, Zhang H Z, et al. Assessing heavy metal contamination and ecological risk in Poyang Lake area, China[J].Environmental Earth Sciences, 2016,75(7):549-564.
    [40]冯敏,杨晓琴,陈玲,等.鄱阳湖湖口段沉积物重金属污染特征及潜在生态风险评价[J].湖南生态科学学报, 2017,4(3):1-7.Feng M, Yang X Q, Chen L, et al. Pollutant characteristics and ecological risk assessment of heavy metals in sediments from the confluent area of Yangtze River and Poyang Lake[J]. Journal of Hunan Ecological Science, 2017,4(3):1-7.
    [41]弓晓峰,黄志中,张静,等.鄱阳湖湿地重金属形态分布及植物富集研究[J].环境科学研究, 2006,19(3):34-41.Gong X F, Huang Z Z, Zhang J, et al. Study on the speciation distributing and the plants enrichment of heavy metal in the wetland of Poyang Lake[J]. Research of Environmental Sciences, 2006,19(3):34-41.
    [42]简敏菲,周雪玲,余厚平,等.乐安河—鄱阳湖湿地植物群落特征及其优势植物对重金属Cu、Pb、Cd的富集[J].广西植物, 2015,35(3):295-302.Jian M F, Zhou X L, Xu H P, et al. Plant community characteristics and the enrichment of heavy species grown in the wetland of Lean River and Poyang Lake metals copper, lead and cadmium in the dominant plant[J]. Guihaia, 2015,35(3):295-302.
    [43]周志龙.鄱阳湖区三种沉水植物对Cu的富集试验[D].南昌:南昌工程学院, 2017.Zhou Z L. Chopper enrichment test of three submerged plants in Poyang Lake region[D]. Nanchang:Nanchang Institute of Technology,2017.
    [44]喻中文,司武卫,关兴中.鄱阳湖湖流监测与分析[J].水利水电快报,2014,35(11):20-23.Yu Z W, Si W W, Guan X Z. Monitoring and analysis of Poyang Lake flow[J]. Express Water Resources&Hydropower Information, 2014,35(11):20-23.
    [45]陈永勤.鄱阳湖典型湖流流场与污染物浓度场的数值模拟[J].重庆环境科学, 1989,11(6):44-49.Chen Y Q. Numerical simulation of the typical lake currents and pollutant distribution of Poyang Lake[J]. Chongqing Environmental Science, 1989,11(6):44-49.
    [46]程时长,卢兵.鄱阳湖湖流特征[J].江西水利科技, 2003,29(2):105-108.Cheng S C, Lu B. The Characteristics of the lake current of Poyang Lake[J]. Jiangxi Hydraulic Science&Technology, 2003,29(2):105-108.
    [47] Sun C Z, Zhen L, Giashuddin M M. Comparison of the ecosystem services provided by China's Poyang Lake wetland and Bangladesh's Tanguar Haor wetland[J]. Ecosystem Services, 2017,26:411-421.
    [48]雷声,张秀平,许新发.基于遥感技术的鄱阳湖水体面积及容积动态监测与分析[J].水利水电技术, 2010,41(11):83-86.Lei S, Zhang X P, Xu X F. Remote sensing based analysis and dynamic monitoring on area and storage of Poyang Lake[J]. Water Resources and Hydropower Engineering, 2010,41(11):83-86.
    [49]吴桂平,刘元波,范兴旺.近30年来鄱阳湖湖盆地形演变特征与原因探析[J].湖泊科学, 2015,27(6):1168-1176.Wu G P, Liu Y B, Fan X W. Bottom topography change patterns of the Lake Poyang and their influence mechanisms in recent 30years[J].Journal of Lake Sciences, 2015,27(6):1168-1176.
    [50]熊道光.鄱阳湖泥沙来源及湖盆近期沉积规律探讨[J].海洋与湖沼, 1990,21(4):374-385.Xiong D G. Investigation on silt source of Poyang Lake and recent sediment regularity of the lake basin[J]. Oceanologia Et Limnologia Sinica, 1990,21(4):374-385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700