用户名: 密码: 验证码:
藏南羊卓雍错湖面大气湍流特征观测分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Observation of atmospheric turbulence characteristics over the Yamzhog Yumco,south Tibet
  • 作者:沈鹏珂 ; 张雪芹
  • 英文作者:SHEN Pengke;ZHANG Xueqin;Key Laboratory of Land Surface Pattern and Simulation,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:相似理论 ; 湍流通量 ; 湍流动能 ; 涡动相关法 ; 羊卓雍错
  • 英文关键词:Similarity theory;;turbulent fluxes;;turbulent kinetic energy;;eddy-covariance measurements;;Yamzhog Yumco
  • 中文刊名:湖泊科学
  • 英文刊名:Journal of Lake Sciences
  • 机构:中国科学院地理科学与资源研究所中国科学院陆地表层格局与模拟重点实验室;中国科学院大学;
  • 出版日期:2019-01-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目(41471064)资助
  • 语种:中文;
  • 页:245-257
  • 页数:13
  • CN:32-1331/P
  • ISSN:1003-5427
  • 分类号:P412;P433
摘要
湍流运动是大气边界层的本质特征,是地表与大气之间能量和物质交换的主要方式.本文利用2016和2017年4-10月藏南羊卓雍错湖泊涡动观测资料,分析了湖面大气湍流方差和湍流特征量的统计和变化特征.结果表明:(1)不稳定层结下,三维风速分量和超声虚温、水汽密度、CO2密度的无量纲标准差随稳定度变化符合Monin-Obukhov相似理论的"1/3"或"-1/3"次幂律,垂直风速的拟合效果最好;稳定层结下,除CO2密度无量纲标准差与稳定度无明显关系外,其他量基本上满足相似性规律;中性条件下,以上物理量的无量纲标准差分别趋近常数:3.57、3.93、0.77、20.91、6.35和11.96.(2)水平方向平均湍流强度(0.60和0.58)大于垂直方向(0.13),三维方向湍流强度与平均风速的变化呈显著负相关,相关系数分别为-0.39、-0.42和-0.34.(3)湖面湍流动能随风速呈线性增长,增长率达0.45 m/s;近中性层结时湍流动能最大,层结越稳定或不稳定湍流动能均减小.(4)湖泊下午到傍晚动量输送较强,13:00-22:30时间段平均动量通量达0.091 kg/(m·s2);热量输送以潜热为主,潜热通量日平均值(77.3 W/m~2)是感热通量(14.6 W/m~2)的5.3倍,感热和潜热通量日变化峰值分别出现在5:30(22.4 W/m~2)和16:00(106.6 W/m~2).
        Turbulent motion is the essential characteristic of atmospheric boundary layer,as well as the main pathway of atmospheric energy and mass transfer. The atmospheric turbulent variance and characteristic quantities are investigated over the Yamzhog Yumco based on eddy covariance data during April-October 2016 and 2017. The main results are summarized as follows.( 1) The dimensionless standard deviations of velocity components,sonic temperature,vapor density,and CO_2 density varying with stability follow the law of"1/3"or"-1/3"fractional power of Monin-Obukhov Similarity Theory in unstable stratification,and the fitting effect of vertical speed is optimal. The dimensionless standard deviations of all physical quantities except CO_2 density,versus stability are also in agreement with the fractional power law in stable stratification. Under the near neutral stratification,these dimensionless standard deviations reach constants: 3.57,3.93,0.77,20.91,6.35 and 11.96,respectively.( 2) The horizontal turbulent intensities( on average,0.60 and 0.58) are larger than vertical turbulent intensity( 0.13),and the variations of three-dimensional turbulent intensities with average wind speed show significant negative correlation with the coefficients of-0.39,-0.42 and-0.34,respectively.( 3) Turbulent kinetic energy increases with wind speed with the rate of 0.45 m/s,and it displays stronger in near neutral stratification,while decreases when the atmosphere becomes stable or unstable.( 4) Momentum flux is large during 13: 00-22: 30 with the average of 0.091 kg/( m·s2). Latent heat flux,5.3 times higher than sensible heat flux with daily average value( 14.6 W/m~2),plays a leading role in heat transportation. Sensible and latent heat flux reach maximum value at 5: 30( 22.4 W/m~2) and 16: 00( 106.6 W/m~2),respectively.
引文
[1] Song CQ,Huang B,Ke LH et al. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. Journal of Hydrology,2014,514:131-144.
    [2] Xiao W,Liu SD,Li XH et al. Transfer coefficients of momentum,heat and water vapour in the atmospheric surface layer of a large shallow freshwater lake:A case study of Lake Taihu. J Lake Sci,2012,24(6):932-942. DOI:10. 18307/2012.0617.[肖薇,刘寿东,李旭辉等.大型浅水湖泊与大气之间的动量和水热交换系数——以太湖为例.湖泊科学,2012,24(6):932-942.]
    [3] Long Z,Perrie W,Gyakum J et al. Northern lake impacts on local seasonal climate. Journal of Hydrometeorology,2007,8(4):881-896.
    [4] Flagg D,Brook J,Sills D et al. Lake Breezes in Southern Ontario:Observations,models and impacts on air quality. In:Borrego C,Miranda AI eds. Air pollution modeling and its application XIX. NATO Science for Peace and Security Series Series C:Environmental Security. Dordrecht:Springer,2008:679-680.
    [5] Samuelsson P,Kourzeneva E,Mironov D. The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environment Research,2010,15(2):113-129.
    [6] Wang W. Energy budget at Lake Taihu and its response to climate change[Dissertation]. Nanjing:Nanjing University of Information Science and Technology,2014:1-3.[王伟.太湖能量收支及其对气候变化的响应[学位论文].南京:南京信息工程大学,2014:1-3.]
    [7] Xiao W,Liu SD,Wang W et al. Transfer coefficients of momentum,heat and water vapour in the atmospheric surface layer of a large freshwater lake. Boundary-Layer Meteorology,2013,148(3):479-494.
    [8] Wang W,Xiao W,Cao C et al. Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China. Journal of Hydrology,2014,511:811-824.
    [9] Lee XH,Liu SD,Xiao W et al. The Taihu Eddy Flux Network:An observational program on energy,water,and greenhouse gas fluxes of a large freshwater lake. Bulletin of the American Meteorological Society,2014,95. DOI:10. 1175/BAMS-D-13-00136.1.
    [10] Zhao XS,Wang SG,Li M et al. Energy flux measurements and environmental controls in summer over the Poyang Lake,China. J Lake Sci,2014,26(6):955-962. DOI:10.18307/2014.0619.[赵晓松,王仕刚,李梅等.鄱阳湖夏季水热通量特征及环境要素影响分析.湖泊科学,2014,26(6):955-962.]
    [11] Zhao XS,Liu YB. Phase transition of surface energy exchange in China’s largest freshwater lake. Agricultural and Forest Meteorology,2017,244/245:98-110.
    [12] Wang BB,Ma YM,Chen XL et al. Observation and simulation of lake-air heat and water transfer processes in a high-altitude shallow lake on the Tibetan Plateau. Journal of Geophysical Research:Atmospheres,2015,120(24):12327-12344.
    [13] Wang BB,Ma YM,Ma WQ et al. Physical controls on half-hourly,daily,and monthly turbulent flux and energy budget over a high-altitude small lake on the Tibetan Plateau. Journal of Geophysical Research:Atmospheres,2017,122(4):2289-2303.
    [14] Liu HZ,Feng JW,Sun JH et al. Eddy covariance measurements of water vapor and CO2,fluxes above the Erhai Lake. Science China:Earth Sciences,2015,58(3):317-328.
    [15] Hu WF,Wang NA,Zhao LQ et al. Water-heat exchange over a typical lake in Badain Jaran Desert,China. Progress in Geography,2015,34(8):1061-1071.[胡文峰,王乃昂,赵力强等.巴丹吉林沙漠典型湖泊湖气界面水-热交换特征.地理科学进展,2015,34(8):1061-1071.]
    [16] Nordbo A,Launiainen S,Mammarella I et al. Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. Journal of Geophysical Research:Atmospheres,2011,116(D2). DOI:10.1029/2010JD014542.
    [17] Wang DD,Wang W,Liu SD et al. Characteristics of modeling hourly water surface evaporation in Lake Taihu and comparison of simulation results by three models. J Lake Sci,2017,29(6):1538-1550. DOI:10.18307/2017.0626.[王丹丹,王伟,刘寿东等.太湖小时尺度水面蒸发特征及3种模型模拟效果对比.湖泊科学,2017,29(6):1538-1550.]
    [18] Assouline S,Tyler SW,Tanny J et al. Evaporation from three water bodies of different sizes and climates:Measurements and scaling analysis. Advances in Water Resources,2008,31(1):160-172.
    [19] Hu YQ. Boundary layer meteorology. Advance in Earth Sciences,1991,6(6):57-59.[胡隐樵.边界层气象学.地球科学进展,1991,6(6):57-59.]
    [20] Sheng PX,Mao JT,Li JG et al eds. Atmospheric Physics. Beijing:Peking University Press,2003:239-272.[盛裴轩,毛节泰,李建国等.大气物理学.北京:北京大学出版社,2003:239-272.]
    [21] Monin AS,Obukhov AM. Dimensionless characteristics of turbulence in the atmospheric surface layer. Doklady Akademii Nauk SSSR,1953,93(2):223-226.
    [22] Liu HZ,Hong ZX. Turbulent characteristics in the surface layer over Gerze Area in the Tibetan Plateau. Scientia Atmospherica Sinica,2000,24(3):289-300.[刘辉志,洪钟祥.青藏高原改则地区近地层湍流特征.大气科学,2000,24(3):289-300.]
    [23] Chen YG,Zhang Y,Wang SY et al. Seasonal variation of turbulence characteristics over alpine meadow ecosystem. Plateau Meteorology,2014,33(3):585-595.[陈云刚,张宇,王少影等.高寒草甸湍流特征量的季节变化特征.高原气象,2014,33(3):585-595.]
    [24] Yang LW,Gao XQ,Hui XY et al. Study on turbulence characteristics in the atmospheric surface layer over Nyainrong grassland in central Qinghai-Tibetan Plateau. Plateau Meteorology,2017,36(4):875-885.[杨丽薇,高晓清,惠小英等.青藏高原中部聂荣亚寒带半干旱草地近地层湍流特征研究.高原气象,2017,36(4):875-885.]
    [25] Ma YM,Ma WQ,Hu ZY et al. Similarity analysis of atmospheric turbulent intensity over grassland surface of Qinghai-Xizang Plateau. Plateau Meteorology,2002,21(5):514-517.[马耀明,马伟强,胡泽勇等.青藏高原草甸下垫面湍流强度相似性关系分析.高原气象,2002,21(5):514-517.]
    [26] Li MS,Ma YM,Ma WQ et al. Analysis of turbulence characteristics over the northern Tibetan Plateau area. Advances in Atmospheric Sciences,2006,23(4):579-585.
    [27] Liu HZ,Feng JW,Zou H et al. Turbulent characteristics of the surface layer in Rongbuk Valley on the northern slope of Mt. Qomolangma. Plateau Meteorology,2007,26(6):1151-1161.[刘辉志,冯健武,邹捍等.青藏高原珠峰绒布河谷地区近地层湍流输送特征.高原气象,2007,26(6):1151-1161.]
    [28] Guo XF,Zhang HS,Cai XH et al. Flux-variance method for latent heat and carbon dioxide fluxes in unstable conditions.Boundary-Layer Meteorology,2009,131(3):363-384.
    [29] Li Y,Li YQ,Zhao XB. Analysis of turbulent characteristics in the surface layer in Litang region on the east edge of Tibetan Plateau. Plateau Meteorology,2009,28(4):745-753.[李英,李跃清,赵兴炳.青藏高原东坡理塘地区近地层湍流特征研究.高原气象,2009,28(4):745-753.]
    [30] Li SS,Lv SH,Gao YH et al. Analysis of the statistical characteristics of the turbulent data at Maqu area in the upper Yellow River. Advances in Earth Science,2012,27(8):901-907.[李锁锁,吕世华,高艳红等.黄河上游玛曲草原湍流统计特征分析.地球科学进展,2012,27(8):901-907.]
    [31] Guo YH,Zhang YS,Ma N et al. Quantifying surface energy fluxes and evaporation over a significant expanding endorheic lake in the central Tibetan Plateau. Journal of the Meteorological Society of Japan,2016,94(5):453-465.
    [32] Li XY,Ma YJ,Huang YM et al. Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau. Journal of Geophysical Research:Atmospheres,2016,121(18):10470-10485.
    [33] Li ZG,Lyu SH,Ao YH et al. Long-term energy flux and radiation balance observations over Lake Ngoring,Tibetan Plateau. Atmospheric Research,2015,155:13-25.
    [34] Chu D,Pu Q,Laba ZM et al. Remote sensing analysis on lake area variations of Yamzho Yunco in Tibetan Plateau. J Lake Sci,2012,24(3):494-502. DOI:10.18307/2012.0324.[除多,普穷,拉巴卓玛等.近40 a西藏羊卓雍错湖泊面积变化遥感分析.湖泊科学,2012,24(3):494-502.]
    [35] LI-CORInc ed. EddyPro software instruction manual:13th edition,2017. https://www.licor.com/env/support/product?p=ec.
    [36] Lee XH,Massman W,Law B eds. Handbook of micrometeorology:A guide for surface flux measurement and analysis.Dordrecht:Kluwer Academic Publishers,2004:181-208.
    [37] Schmid HP,Csb G,Cropley F et al. Measurements of CO2and energy fluxes over a mixed hardwood forest in the midwestern United States. Agricultural and Forest Meteorology,2000,103(4):357-374.
    [38] Kljun N,Calanca P,Rotach MW et al. A simple parameterization for flux footprint predictions. Boundary-Layer Meteorology,2004,112(3):503-523.
    [39] Stull RB ed. Trans. by Yang CX. An introduction to boundary layer meteorology. Beijing:Meteorological Press,1991:48-50,187-191.[Stull RB著.杨长新译.边界层气象学导论.北京:气象出版社,1991:48-50,187-191.]
    [40] Panofsky HA,Tennekes H,Lenschow DH et al. The characteristics of turbulent velocity components in the surface layer under convective conditions. Boundary-Layer Meteor,1977,11(3):355-361.
    [41] Tillman JE. The indirect determination of stability,heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. Journal of Applied Meteorology,1972,11(5):783-792.
    [42] Zhao M,Miao MQ,Wang YC eds. Boundary meteorology. Beijing:Meteorology Press,1991:465.[赵鸣,苗曼倩,王彦昌.边界层气象学教程.北京:气象出版社,1991:465.]
    [43] Yue P,Zhang Q,Niu SJ et al. Statistical characteristic of atmospheric turbulence in clear and dust weather conditions in Inner Mongolian Grassland during spring. Plateau Meteorology,2011,30(5):1180-1188.[岳平,张强,牛生杰等.春季内蒙古草原典型晴天与沙尘条件下湍流速度统计特征对比分析.高原气象,2011,30(5):1180-1188.]
    [44] Panofsky HA,Dutton JA eds. Atmospheric turbulence. Models and methods for engineering applications. New York:John Wiley&Sons Inc.,1984.
    [45] Zhang HS,Li FY,Chen JY. Statistical characteristics of atmospheric turbulence in different underlying surface conditions.Plateau Meteorology,2004,23(5):598-604.[张宏升,李富余,陈家宜.不同下垫面湍流统计特征研究.高原气象,2004,23(5):598-604.]
    [46] Duan ZQ. Eddy covariance measurements of marine atmospheric boundary-layer turbulence and air-sea fluxes. Qingdao:Ocean University of China[Dissertation],2013:36-59.[段自强.利用涡动相关法研究海洋大气边界层湍流特征与海气物质交换[学位论文].青岛:中国海洋大学,2013:36-59.]
    [47] Willis GE,Deardorff JW. On the use of Taylor’s translation hypothesis for diffusion in the mixed layer. Quarterly Journal of the Royal Meteorological Society,1976,102(434):817-822.
    [48] Yu ZH,Miao MQ,Jiang QR et al eds. Fluid mechanics:3rd edition. Beijing:Meteorology Press,2004:212-218.[余志豪,苗曼倩,蒋全荣等.流体力学:第三版.北京:气象出版社,2004:212-218.]
    [49] Zhang HS,Liu XJ,Zhu H et al. Characteristics of turbulent transfer during the strong wind period in the northern suburbs of Beijing. Chinese Journal of Atmospheric Sciences,2010,34(3):661-668.[张宏升,刘新建,朱好等.北京北郊冬季大风过程湍流通量演变特征的分析研究.大气科学,2010,34(3):661-668.]
    [50] Wang YJ,Xu XD,Zhao TL et al. Structures of convection and turbulent kinetic energy in boundary layer over the southeastern edge of the Tibetan Plateau. Science China:Earth Sciences,2015,58(7):1198-1209.
    [51] Ma YM,Wang JM,Zhang QR et al. The analysis of turbulent fluxes transfer characteristics over Nansha region. Plateau Meteorology,1997,16(1):45-51.[马耀明,王介民,张庆荣等.南沙海域大气湍流通量输送特征分析.高原气象,1997,16(1):45-51.]
    [52] Huang R,Zhao JY,Xiao W et al. Temporal variability of radiation and energy budgets over Lake Taihu. Resources and Environment in the Yangtze Basin,2016,25(5):733-742.[黄锐,赵佳玉,肖薇等.太湖辐射和能量收支的时间变化特征.长江流域资源与环境,2016,25(5):733-742.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700