用户名: 密码: 验证码:
生物样本速冻装置冷台模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation on the Cooling Stage of Quick Freezing Device for Biological Samples
  • 作者:陈州旗 ; 刘宝林 ; 宋晓燕 ; 豆孟柯
  • 英文作者:Chen Zhouqi;Liu Baolin;Song Xiaoyan;Dou Mengke;Institute of Biothermal and Technology,University of Shanghai for Science and Technology;
  • 关键词:低温保存 ; 速冻装置 ; 冷台结构 ; 数值模拟 ; 斯特林循环
  • 英文关键词:cryopreservation;;quick freezing device;;cooling stage structure;;numerical simulation;;Stirling cycle
  • 中文刊名:制冷学报
  • 英文刊名:Journal of Refrigeration
  • 机构:上海理工大学生物系统热科学研究所;
  • 出版日期:2019-06-16
  • 出版单位:制冷学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金(51776130);; 国家重点研发计划重点专项(2017YFD0400404)资助项目~~
  • 语种:中文;
  • 页:162-169
  • 页数:8
  • CN:11-2182/TB
  • ISSN:0253-4339
  • 分类号:Q-337
摘要
在低温生物学及转化医学等研究中需要冷冻复苏后的样本具有较高的成活率,冻存装置是保证其质量的重要一环。本文设计了以80 W斯特林制冷机为冷源的新型样本速冻平台,并基于COMSOL Multiphysics有限元模拟软件对冷台结构进行了模拟分析,结果表明:管间距对样本降温速率无显著影响;冷台高度对样本冷冻过程中的降温速率及温度均匀性影响较大,其中模拟4组样本效果最好的是H=25 mm,比样本高度略低;此外,冷台半径越小,样本降温速率越快,半径越大管内温差相对越小,但不同半径之间差距较小。
        A higher survival rate of frozen-thawed biological samples is required for clinical use and translational medicine. The cooling rate of samples is one of the most important factors affecting survival. In this study,a new sample quick freezing platform using an 80-W Stirling refrigerator as a cold source was designed. The structure of the cooling stage was determined by heat transfer simulation to obtain the fastest cooling rate using finite element simulation software( COMSOL). The results show that the distance between the sample vials has no significant effect on the cooling rate of the samples. The height of the cooling stage is the main factor that influences the cooling rate and temperature uniformity of the samples. A height of the cooling stage H = 25 mm gives the best results,which is slightly lower than the height of the samples. In addition,when the radius of the cooling stage is smaller,the cooling rate of the samples is faster,and the temperature difference of the samples is relatively larger; however,the result gap is not significant.
引文
[1]华泽钊,任和盛.低温生物医学技术[M].北京:科学出版社,1994:3-16.(HUA Zezhao,REN Hesheng.Low temperature biomedical technology[M]. Beijing:Science Press,1994:3-16.)
    [2] MAZUR P,LEIBO S P,CHU E H Y. A two-factor hypothesis of freezing injury evidence from Chinese hamster tissue-culture cells[J]. Experimental Cell Research,1972,71(2):345-355.
    [3] KATKOV I I. Current frontiers in cryobiology[M]. Rijeka:In Tech,2012:507-546.
    [4]孙冰冰.生物组织冷冻保存若干关键问题的研究[D].大连:大连理工大学,2005.(SUN Bingbing. Studies on key issues on the cryopreservation of biological tissues[D].Dalian:Dalian University of Technology,2005.)
    [5]蒋振东.生物组织冷冻过程传热现象研究[D].合肥:中国科学技术大学,2016.(JIANG Zhendong. Heat transfer in biological tissues during freezing[D]. Hefei:University of Science and Technology of China,2016.)
    [6] GURINA T M,PAKHOMOV A V,POLYAKOVA A L,et al. The development of the cell cryopreservation protocol with controlled rate thawing[J]. Cell and Tissue Banking,2016,17(2):303-316.
    [7] BAARTZ G,BROCK M A. A microprocessor-controlled rate controller for use in cryopreservation[J]. Cryobiology,1979,16(5):497-505.
    [8]彭海柱,华泽钊,陶乐仁.内加热加压喷射式液氮程序降温仪的研制[J].低温工程,2000(5):8-12.(PENG Haizhu,HUA Zezhao,TAO Leren. A new programmable coooler with internal heating and pressing liquefied nitrogen[J].Cryogenics,2005(5):8-12.)
    [9] LIN Peiyi,YANG Yaochen,HUNG S H,et al. Cryopreservation of human embryonic stem cells by a programmed freezer with an oscillating magnetic field[J]. Cryobiology,2013,66(3):256-260.
    [10] RALL W F. Factors affecting the survival of mouse embryos cryopreserved by vitrification[J]. Cryobiology,1987,24(5):387-402.
    [11]李维杰,王利红,刘宝林,等.新型卵母细胞载体降温速率的实验研究[J].制冷学报,2016,37(1):114-118.(LI Weijie,WANG Lihong,LIU Baolin,et al.Experimental study on the cooling rate of a new type of oocyte carriers[J]. Journal of Refrigeration,2016,37(1):114-118.)
    [12]苏风民,马鸿斌,高洪涛,等.基于薄液膜蒸发的超高速冷冻方法初探[J].工程热物理学报,2014,35(3):538-540.(SU Fengmin,MA Hongbin,GAO Hongtao,et al.Preliminary study of ultra-fast cooling method utilizing thin film evaporation[J]. Journal of Engineering Thermophysics,2014,35(3):538-540.)
    [13] BOLYUKH V F,KATKOV I,KRYUKOVA N V. Cryopreservation by vitrification:basic thermodynamic principals,methods and devices[J]. Cryobiology,2018,80:173.
    [14] FOUNTAIN D,RALSTON M,HIGGINS N,et al. Liquid nitrogen freezers:a potential source of microbial contamination of hematopoietic stem cell components[J]. Transfusion,1997,37(6):585.
    [15] BIELANSKI A,BERGERON H,LAU P C,et al. Microbial contamination of embryos and semen during long term banking in liquid nitrogen[J]. Cryobiology,2003,46(2):146-152.
    [16] COBO A,ROMERO J L,PEREZ S,et al. Storage of human oocytes in the vapor phase of nitrogen[J]. Fertility and Sterility,2010,94(5):1903.
    [17] VAJTA G,RIENZI L,UBALDI F M. Open versus closed systems for vitrification of human oocytes and embryos[J].Reproductive Biomedicine Online,2015,30(4):325-333.
    [18]陈国邦,汤珂.小型低温制冷机原理[M].北京:科学出版社,2010:40-56.(CHEN Guobang,TANG Ke.Principle of small cryocooler[M]. Beijing:Science Press,2010:40-56.)
    [19] CREEMERS E,NIJS M,VANHEUSDEN E,et al. Cryopreservation of human sperm:efficacy and use of a new nitrogen-free controlled rate freezer versus liquid nitrogen vapour freezing[J]. Andrologia,2011,43(6):392-397.
    [20] MASSIE I,SELDEN C,HODGSON H,et al. GMP cryopreservation of large volumes of cells for regenerative medicine:active control of the freezing process[J]. Tissue Eng Part C Methods,2014,20(9):693-702.
    [21]王铁军,张文君,杨海明,等.便携式斯特林深冷冰箱研制[J].制冷学报,2011,32(2):27-29.(WANG Tiejun,ZHANG Wenjun,YANG Haiming,et al. Development of portable stiring cryogenic refrigerator[J]. Journal of Refrigeration,2011,32(2):27-29.)
    [22]徐雅,蔡亚超,沈惬,等.液氮温区大冷量斯特林制冷机优化研究[J].工程热物理学报,2015,36(10):2083-2086.(XU Ya,CAI Yachao,SHEN Qie,et al. Optimization study on high cooling capacity Stirling cryocoolernworking on liquid nitrogen temperature[J]. Journal of Engineering Thermophysics,2015,36(10):2083-2086.)
    [23]陈曦,张华,吴亦农.斯特林制冷机用于商业制冷的研究现状初析[J].制冷学报,2008,29(6):51-56.(CHEN Xi,ZHANG Hua,WU Yinong. Review of Stirling cooler key technologies applied in commercial refrigeration[J]. Journal of Refrigeration,2008,29(6):51-56.)
    [24]夏全刚,刘宝林,宋晓燕.一种新型冷藏车箱体模型的设计与实验验证[J].制冷学报,2014,35(4):108-112.(XIA Quangang,LIU Baolin,SONG Xiaoyan. Design and experimental verification of a new type of refeigerated vehicle model[J]. Journal of Refrigeration,2014,35(4):108-112.)
    [25]庄禾,谢荣建,刘博轩,等.-80℃斯特林低温冰箱研制[J].低温工程,2017(5):65-70.(ZHUANG He,XIE Rongjian,LIU Boxuan,et al. Development of a-80℃Stirling-cooled low temperature refrigerator[J]. Cryogenics,2017(5):65-70.)
    [26]宋姗姗,郭雪岩. Boussinesq近似与封闭腔体内自然对流的数值模拟[J].力学季刊,2012,33(1):60-67.(SONG Shanshan,GUO Xueyan. Boussinesq approximation and numerical simulation of natual convection in a closed square cavity[J]. Chinese Quarterly of Mechanics,2012,33(1):60-67.)
    [27] INFANTE J A,IVORRA B,REDONDO J L,et al. Simulation and optimization of high-pressure/temperature food treatments by using comsol multiphysics[C]//Proceedings of Iberian COMSOL Multiphysics Conference. 2015:113-115.
    [28]张翔,韩佳伟,杨信廷,等.不同构造冷藏车厢体的冷却性能模拟与比较[J].制冷学报,2018,39(2):89-98.(ZHANG Xiang,HAN Jiawei,YANG Xinting,et al. Simulation and comparison of cooling performances of refrigerated vehicles with different structures[J].Journal of Refrigeration,2018,39(2):89-98.)
    [29]魏露露,赖艳华,陆永达.传输损失对斯特林制冷机冷量的影响[J].山东大学学报(工学版),2016,46(5):116-119.(WEI Lulu,LAI Yanhua,LU Yongda. The influence of transmission loss on the cold of Stirling cryocooler[J].Journal of Shandong University(Engineering Science),2016,46(5):116-119.)
    [30]张斌,李建国,蔡京辉.单台脉冲管制冷机多温区供冷的实验研究[J].低温工程,2013(5):16-19.(ZHANG Bin,LI Jianguo,CAI Jinghui. Experimental study of a pulse tube cryocooler supplying cooling power at multi-temperature levels[J]. Cryogenics,2013(5):16-19.)
    [31]叶庆银,刘斌,臧润清,等.小型恒温箱恒温性能的理论及实验研究[J].制冷与空调(北京),2007,7(4):48-50.(YE Qingyin,LIU Bin,ZANG Runqing,et al. Theoretical and experimental study on performance of small thermostat[J]. Refrigeration and Air-conditioning,2007,7(4):48-50.)
    [32] HU Jianying,WANG Xiaotao,DAI Wei,et al. High efficiency linear compressor driven pulse tube cryocooler operating in liquid nitrogen temperature[J]. Chinese Science Bulletin,2009,54(23):4428-4431.
    [33]王波,徐海峰,张文千,等.基于气体轴承斯特林制冷机的低温冰箱[J].低温与超导,2017(8):26-31.(WANG Bo,XU Haifeng,ZHANG Wenqian,et al. A low-temperature refrigerator based on gas bearing Stirling cryocoolers[J]. Cryogenics&Superconductivity,2017(8):26-31.)
    [34] IKUSHIMA Y,LI R,TOMARU T,et al. Ultra-low-vibration pulse-tube cryocooler system-cooling capacity and vibration[J].Cryogenics,2008,48(9/10):406-412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700