用户名: 密码: 验证码:
基于主动加热光纤法的土中含水率测定与蒸腾分割模型评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Monitoring of moisture content in soil and evaluation of transpiration segmentation model based on Actively Heated Fiber Optic method
  • 作者:张晓明 ; 施斌 ; 曹鼎峰 ; 张岩 ; 孙梦雅 ; 魏广庆
  • 英文作者:ZHANG Xiaoming;SHI Bin;CAO Dingfeng;ZHANG Yan;SUN Mengya;WEI Guangqing;School of Earth Sciences and Engineering,Nanjing University;Suzhou Nanzee Sensing Technology Ltd.;
  • 关键词: ; 含水率 ; 主动加热光纤法(AHFO) ; 蒸腾分割模型 ; 水力作用
  • 英文关键词:soil;;moisture content;;AHFO;;transpiration segmentation model;;hydraulic action
  • 中文刊名:水文地质工程地质
  • 英文刊名:Hydrogeology & Engineering Geology
  • 机构:南京大学地球科学与工程学院;苏州南智传感科技有限公司;
  • 出版日期:2019-03-15
  • 出版单位:水文地质工程地质
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金重点项目(41230636);; 国家重大科研仪器研制项目(41427801)
  • 语种:中文;
  • 页:78-85
  • 页数:8
  • CN:11-2202/P
  • ISSN:1000-3665
  • 分类号:TU41
摘要
植物的蒸腾作用会改变土的基质吸力,进而影响土的力学性质。文章选用三种不同蒸腾速率的鸭脚木、绿萝和常青藤,利用主动加热光纤法(AHFO)对植物根系周围土的含水率进行了分布式测试,研究了植物蒸腾过程中的水力作用,评价了常用的描述植物与土的水力交互作用的蒸腾分割模型。试验结果表明:植物对土中含水率的影响可用蒸腾分割模型进行有效描述,含水率变化受植物叶面积、根系密度、土层深度和蒸腾时间的影响;绿萝与鸭脚木叶面积指数和根系密度相近,二者引起根部周围土中的含水率变化值相近,为0.075 m3/m3,常青藤的叶面积指数和根系密度远远大于绿萝与鸭脚木。因此,常青藤引起的根部周围土中的含水率变化值远大于其他两种植物,为0.125 m3/m3;植物对土中水分运移的影响主要在土的表层10~15 cm深度范围内,深部位置的水分场几乎不受植物的影响;湿润后,植物对土中含水率的影响以干燥初期最为显著,主要由植物的被动吸水作用引起。
        The transpiration of plants will change the matric suction of soil and affect the mechanical properties of soil.In this paper,three kinds of plants are chosen with different transpiration rate:ivy tree bark,scindapsus aureus and Ivy League,active heating fiber optic(hereinafter referred to as AHFO),and are adopted to test on the moisture content of soils distributed around the plant roots.This paper also examines the hydraulic effect in the process of transpiration and evaluates the transpiration segmentation model which is commonly used to describe hydraulic interaction between plants and soil.The experimental results show that(1) the influence of plants on soil moisture content can effectively be described by the transpiration segmentation model,and the change in water content is affected by the plant leaf area,root density,soil depth and transpiration time.(2) The leaf area index and root density of ivy tree bark and scindapsus aureus are similar,and the change value of water content in soil around the root is similar(0.075 m3/m3).The leaf area index and root density of Ivy League are much higher than those of ivy tree bark an scindapsus aureus.Therefore,the change value(0.125 m3/m3) of moisture content in the soil around the root caused by IvyLeague is much higher than the other two plants.(3) In this experiment,the depth influenced by plants on the water transport in soil ranges mainly from 10 to 15 cm,and the water field at depth is almost not affected by plants.(4) After wetting,the influence of plants on soil moisture content is most obvious at the early stage of drying,which is mainly caused by the passive water absorption of plants.
引文
[1]吴宏伟.大气-植被-土体相互作用:理论与机理[J].岩土工程学报,2017,39(1):1-47.[WU HW.Atmosphere-plant-soil interactions:theories and mechanisms[J].Chinese Journal of Geotechnical Engineering,2017,39(1):1-47.(in Chinese)]
    [2]LEE E H,JOHN B J.Examining the impact of wind and surface vegetation on the Asian dust occur-rence over three classified source regions[J].Journal of Geophysical Research:Atmosphere,2009,114:D06205-1-12.
    [3]WU T H,McKinnell III W P,Swanston D N.Strength of tree roots and landslides on Prince of Wales Island,Alaska[J].Canadian Geotechnical Journal,1979,16(1):19-33.
    [4]Pollen N,Simon A.Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model[J].Water Resources Research,2005,41:W07025-1-11.
    [5]Leung A K,Garg A,Ng C W W.Effects of plant roots on soil-water retention and induced suction in vegetated soil[J].Engineering Geology,2015,193(4):183-197.
    [6]Albasha R,Mailhol J C,Cheviron B.Compensatory uptake functions in empirical macroscopic root water uptake models-Experimental and numerical analysis[J].Agricultural Water Management,2015,155(3):22-39.
    [7]Hopmans J W,Bristow K L.Current capabilities and future needs of root water and nutrient uptake modeling[C]//Advances in agronomy.Salt lake:Academic Press,2002,77:103-183.
    [8]朱李英,孙西欢,马娟娟.植物根系吸水模型的研究进展[J].科技情报开发与经济,2006,16(5):150-152.[ZHU L Y,SUN X H,MA J J.The progress of the research on plant-root water uptake model[J].Sci-Tech Information Development&Economy,2006,16(5):150-152.(in Chinese)]
    [9]Feedes,R A,Kowalik,et al.Simulation of field water use and crop yield[J].Soil Science,1978,129(3):193.
    [10]Dirksen C,Augustijn D C M.Root water uptake function for nonuniform pressure and osmotic potentials[J].Agron,1988:23-28.
    [11]罗毅,于强,欧阳竹,等.利用精确的田间实验资料对几个常用根系吸水模型的评价与改进[J].水利学报,2000,31(4):73-80.[LUO Y,YU Q,OU Y Z,et al.Evaluation and improvement of several commonly used models of root water uptake by using accurate field experimental data[J].Journal of Hydraulic Engineering,2000,31(4):73-80.(in Chinese)]
    [12]邵明安,杨文治,李玉山.植物根系吸水的数值模型[J].土壤学报,1987,24(4):295-304.[SHAOM A,YANG W Z,LI Y S.Numerical model of root water uptake by plant[J].Acta Pedologica Sinica,1987,24(4):295-304(in Chinese)].
    [13]Garg A,Leung A K,Ng C W W.Comparisons of soil suction induced by evapotranspiration and transpiration of S.heptaphylla[J].Canadian Geotechnical Journal,2015,52(12):2149-2155.
    [14]王玉阳,陈亚鹏.植物根系吸水模型研究进展[J].草业学报,2017,26(3):214-225.[WANGY Y,CHEN Y P.The progress of the research on plant-root water uptake model[J].Acta Prataculturae Sinica,2017,26(3):214-225.(in Chinese)]
    [15]信迺诠.计算农田蒸发的水量平衡法[J].干旱地区农业研究,1986(2):33-39.[XIN N Q.The water balance method for calculating farmland evaporation[J].Agricultural Research in the Arid Areas,1986(2):33-39.(in Chinese)]
    [16]曹鼎峰,施斌,顾凯,等.土的含水率AHFO法测量中分段函数模型建立[J].水文地质工程地质,2016,43(6):41-47.[CAO D F,SHI B,GU K,et al.Establishment of the piecewise function model in the process of soil moisture monitoring with the AHFOmethod[J].Hydrogeology&Engineering Geology,2016,43(6):41-47.(in Chinese)]
    [17]Sayde C,Gregory C,Gil-Rodriguez M,et al.Feasibility of soil moisture monitoring with heated fiber optics[J].Water Resources Research,2010,46(6):W06201-1-8.
    [18]廖斌.基于ROTDR的核废物处置库近场温度监测系统研制[D].成都:成都理工大学,2016.[LIAOB.Development of near field temperature monitoring system of Nuclear waste disposal repository based on ROTDR[D].Chengdu:Chengdu university of technology,2016.(in Chinese)]
    [19]周葆春,孔令伟,陈伟,等.荆门膨胀土土-水特征曲线特征参数分析与非饱和抗剪强度预测[J].岩石力学与工程学报,2010,29(5):1052-1059.[ZHOU B C,KONG L W,CHEN W,et al.Analysis of characteristic parameters of soil-water characteristic curve(SWCC)and unsaturated shear strength prediction of Jing Men expansive soil[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(5):1052-1059.(in Chinese)]
    [20]郑华斌,姚林,刘建霞,等.种植方式对水稻产量及根系性状的影响[J].作物学报,2014,40(4):667-677.[ZHENG H B,YAO L,LIU J X,et al.Effect of ridge&terraced cultivation on rice yield and root trait[J].Acta Agronomica Sinica,2014,40(4):667-677.(in Chinese)]
    [21]李建兴,谌芸,何丙辉,等.不同草本的根系分布特征及对土体水分状况的影响[J].水土保持通报,2013,33(1):81-87.[LI J X,SHEN Y,HE BH,et al.Distribution characteristics of different Herbs'root system and their effects on soil moisture[J].Bulletin of Soil and Water Conservation,2013,33(1):81-87.(in Chinese)]
    [22]Leung A K,Garg A,Ng C W W.Effects of plant roots on soil-water retention and induced suction in vegetated soil[J].Engineering Geology,2015,193(4):183-197.
    [23]阳园燕,郭安红,安顺清,等.土壤-植物-大气连续体(SPAC)系统中植物根系吸水模型研究进展[J].气象科技,2004,32(5):316-321.[YANGY Y,GUO A H,AN S Q,et al.Research on plantroot water uptake models in soil-plant-atmosphere continuum[J].Meteorological Science and Tecnology,2004,32(5):316-321.(in Chinese)]
    [24]Varney G T,Canny M J.Rates of water uptake into the mature root system of maize plants[J].New Phytologist,1993,123(4):775-786.
    [25]Hopmans J W,Bristow K L.Current capabilities and future needs of root water and nutrient uptake modeling[C]//Advances in agronomy.Cambridge,Massachusetts:Academic Press,2002,77:103-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700