用户名: 密码: 验证码:
外源有机酸对镉胁迫下秋华柳镉积累特征的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of exogenous organic acids on the characteristics of Cd accumulation of Salix variegata under Cd stress
  • 作者:陈红纯 ; 吴科君 ; 李瑞 ; 王婷 ; 周翠 ; 马文超 ; 魏虹
  • 英文作者:CHEN Hongchun;WU Kejun;LI Rui;WANG Ting;ZHOU Cui;MA Wenchao;WEI Hong;Key Laboratory of Eco-environments in Three Gorges Reservoir Region( Ministry of Education) ,Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region,School of Life Sciences,Southwest University;Panzhihua Tourism Bureau;
  • 关键词:有机酸 ; Cd污染 ; 秋华柳 ; 植物修复 ; Cd积累特征
  • 英文关键词:organic acid;;cadmium contamination;;Salix variegata;;phytoremediation;;cadmium accumulation characteristics
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:三峡库区生态环境教育部重点实验室重庆市三峡库区植物生态与资源重点实验室西南大学生命科学学院;攀枝花市旅游局;
  • 出版日期:2019-04-01 09:14
  • 出版单位:生态学报
  • 年:2019
  • 期:12
  • 基金:国家十三五重点研发计划(2017YFC0505305);; 国家国际科技合作专项(2015DFA90900);; 三峡后续工作库区生态与生物多样性保护专项项目(5000002013BB5200002);; 中央财政林业科技推广示范资金项目(20170183)
  • 语种:中文;
  • 页:302-310
  • 页数:9
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:X503.235
摘要
为探究外源有机酸在加强秋华柳(Salix variegata Franch.)镉积累效率中的应用潜力,采用营养液培养方法,研究了5种100μmol/L外源有机酸(草酸、柠檬酸、酒石酸、苹果酸和琥珀酸)对50μmol/L Cd胁迫下秋华柳生长适应性及Cd积累特征的影响,并通过化学平衡程序VISUAL MINTEQ v3.0计算溶液中不同化学形态Cd(游离态和螯合态Cd)的含量。结果表明:柠檬酸、酒石酸、苹果酸和琥珀酸的添加有效缓解了Cd对秋华柳的毒害,明显促进了秋华柳的生长。除草酸处理组外,其余4个有机酸处理组培养液中游离Cd~(2+)含量均得到较大提升,显著促进了秋华柳对Cd的吸收。柠檬酸、酒石酸、琥珀酸和苹果酸的添加显著提高了秋华柳植株的Cd积累量,分别是未加入有机酸Cd处理组的210%、190%、190%和178%。外源有机酸的施加提高了介质中游离Cd~(2+)的含量,并通过与重金属的络合等作用提升了植株对Cd的吸收和积累能力。但不同有机酸对秋华柳Cd积累特征的影响差异明显,柠檬酸加入后通过提高秋华柳根生物量和根中Cd含量,显著增加了根系Cd积累量;酒石酸、苹果酸和琥珀酸的应用则明显提高了秋华柳地上部分Cd积累量。因此,外源酒石酸、琥珀酸和苹果酸的应用可提高秋华柳地上部分的Cd积累效率,更有利于对Cd污染土壤的修复。
        Cadmium(Cd) is characterized as being highly toxic to human health, and its accumulation in plants may exert a health risk for humans through food chain. Phytoextraction is a way for plants to transfer heavy metals from soils to the harvestable parts, which is considered to be an environment-friendly and inexpensive technology for the remediation of metal-contaminated soils. Chelate-induced phytoextraction reduced by organic acids can be used to enhance metal uptake and translocation in plants. To explore the application potential of exogenous organic acids in accelerating Cd accumulation efficiency in Salix variegata Franch., a nutrient culture experiment was conducted to detect the effects of five exogenous organic acids(oxalic acid, citric acid, tartaric acid, malic acid, and succinic acid) with the concentration of 100 μmol/Lon the growth adaptability and Cd accumulation of S. variegata under 50 μmol/L Cd stress. The contents of different Cd speciation(free and chelated Cd) in the solution were calculated by the chemical equilibrium program VISUAL MINTEQ v3.0.The results showed that the addition of citric acid, tartaric acid, malic acid, and succinic acid effectively alleviated the toxicity of Cd stress on S. variegata, and significantly improved its growth. Except for the oxalic acid-treated group, the free Cd~(2+) was greatly increased, which significantly promoted the absorption of Cd in S. variegata. The addition of citric acid, tartaric acid, malic acid, and succinic acid significantly increased Cd accumulation rates in S. variegata plants, which were 210%, 190%, 178%, and 190%, respectively compared with that of the CK group. The application of exogenous organic acid increased the content of free Cd~(2+) in the culture and enhanced the ability of plants to absorb and accumulate Cd through complexation with heavy metals. However, the effects of different organic acids on the Cd accumulation characteristics of S. variegata were obvious. The addition of citric acid increased the root biomass and Cd content of roots significantly, whereas the application of tartaric acid, malic acid, and succinic acid increased aboveground Cd accumulation of S. variegata. In summary, the application of exogenous tartaric acid, succinic acid, and malic acid can improve the Cd accumulation efficiency of the aboveground parts of S. variegata, which will be beneficial to the phytoremediation of Cd-contaminated soil.
引文
[1] Alloway B J.Heavy Metals in Soils.Glasgow,Scotland:Blackie Academic and Professional Publication,1995,122- 127.
    [2] He S Y,He Z L,Yang X E,Stoffella P J,Baligar V C.Soil Biogeochemistry,plant Physiology,and phytoremediation of cadmium-contaminated soils.Advances in Agronomy,2015,134:135- 225.
    [3] Gill S S,Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.Plant Physiology and Biochemistry,2010,48(12):909- 930.
    [4] Dias M C,Monteiro C,Moutinho-Pereira J,Correia C,Gon?alves B,Santos C.Cadmium toxicity affects photosynthesis and plant growth at different levels.Acta Physiologiae Plantarum,2013,35(4):1281- 1289.
    [5] Neugschwandtner R W,Tlusto? P,Komárek M,Száková J.Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes:Laboratory versus field scale measures of efficiency.Geoderma,2008,144(3/4):446- 454.
    [6] Mahar A,Wang P,Ali A,Awasthi M K,Lahori A H,Wang Q,Li R H,Zhang Z Q.Challenges and opportunities in the phytoremediation of heavy metals contaminated soils:A review.Ecotoxicology and Environmental Safety,2016,126:111- 121.
    [7] Marques A P G C,Rangel A O S S,Castro P M L.Remediation of heavy metal contaminated soils:phytoremediation as a potentially promising clean-up technology.Critical Reviews in Environmental Science and Technology,2009,39(8):622- 654.
    [8] Persans M W,Salt D E.Possible molecular mechanisms involved in nickel,zinc and selenium hyperaccumulation in plants.Biotechnology and Genetic Engineering Reviews,2000,17(1):389- 413.
    [9] 骆永明.强化植物修复的螯合诱导技术及其环境风险.土壤,2000,(2):57- 61,74- 74.
    [10] Evangelou M W H,Ebel M,Schaeffer A.Chelate assisted phytoextraction of heavy metals from soil.Effect,mechanism,toxicity,and fate of chelating agents.Chemosphere,2007,68(6):989- 1003.
    [11] Do Nascimento C W,Amarasiriwardena D,Xing B S.Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil.Environmental Pollution,2006,140(1):114- 123.
    [12] Wuana R A,Okieimen F E,Imborvungu J A.Removal of heavy metals from a contaminated soil using organic chelating acids.International Journal of Environmental Science & Technology,2010,7(3):485- 496.
    [13] Ma J F,Ryan P R,Delhaize E.Aluminium tolerance in plants and the complexing role of organic acids.Trends in Plant Science,2001,6(6):273- 278.
    [14] 刘宛茹,张磊,杨惟薇,黎晓峰,潘丽萍,李强,张超兰.外源有机酸对红蛋植物吸收和转运镉的影响.土壤通报,2014,45(1):205- 209.
    [15] Kim S H,Lee I S.Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil.Bulletin of Environmental Contamination and Toxicology,2010,84(2):255- 259.
    [16] 梁彦秋,潘伟,刘婷婷,铁梅,邓斌,孙鹏,邢志强,臧树良.有机酸在修复Cd污染土壤中的作用研究.环境科学与管理,2006,31(8):76- 78.
    [17] 贾中民,程华,魏虹,李昌晓.三峡库区岸生植物秋华柳对镉胁迫的光合响应.林业科学,2012,48(6):152- 158.
    [18] 贾中民,魏虹,孙晓灿,李昌晓,孟翔飞,谢小红.秋华柳和枫杨幼苗对镉的积累和耐受性.生态学报,2011,31(1):107- 114.
    [19] 孙晓灿,魏虹,谢小红,贾中民,孟翔飞.水培条件下秋华柳对重金属Cd的富集特性及光合响应.环境科学研究,2012,25(2):220- 225.
    [20] 周翠.外源有机酸对秋华柳镉积累效率的影响.重庆:西南大学,2018,9- 16.
    [21] Gustafsson J P.Visual MINTEQ 3.0 User Guide.Stockholm:KTH Royal Institute of Technology,2012:1- 10.
    [22] 聂发辉.关于超富集植物的新理解.生态环境,2005,14(1):136- 138.
    [23] Tandy S,Bossart K,Mueller R,Ritschel J,Hauser L,Schulin R,Nowack B.Extraction of heavy metals from soils using biodegradable chelating agents.Environmental Science & Technology,2004,38(3):937- 944.
    [24] Singh P K,Tewari R K.Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L.plants.Journal of Environmental Biology,2003,24(1):107- 112.
    [25] Baker A J M,Walker P L.Ecophysiology of metal uptake by tolerant plants//Shaw A J,ed.Heavy Metal Tolerance in Plants:Evolutionary Aspects.Boca Raton FL:CRC Press,1990:155- 177.
    [26] Irtelli B,Navari-Izzo F.Influence of sodium nitrilotriacetate (NTA) and citric acid on phenolic and organic acids in Brassica juncea grown in excess of cadmium.Chemosphere,2006,65(8):1348- 1354.
    [27] Han Y L,Huang S Z,Yuan H Y,Zhao J Z,Gu J G.Organic acids on the growth,anatomical structure,biochemical parameters and heavy metal accumulation of Iris lactea var.Chinensis seedling growing in Pb mine tailings.Ecotoxicology,2013,22(6):1033- 1042.
    [28] Chigbo C,Batty L.Chelate-assisted phytoremediation of Cu-pyrene-contaminated soil using Z.mays.Water,Air,& Soil Pollution,2015,226(3):74.
    [29] Arsenov D,Zupunski M,Borisev M,Nikolic N,Orlovic S,Pilipovic A,Pajevic S.Exogenously applied citric acid enhances antioxidant defense and phytoextraction of cadmium by willows (Salix Spp.).Water,Air,& Soil Pollution,2017,228(6):221.
    [30] An Y,Zhou P,Xiao Q,Shi D Y.Effects of foliar application of organic acids on alleviation of aluminum toxicity in alfalfa.Journal of Plant Nutrition and Soil Science,2014,177(3):421- 430.
    [31] Chaffai R,Tekitek A,El Ferjani E.A comparative study on the organic acid content and exudation in maize (Zea mays L.) seedlings under conditions of copper and cadmium stress.Asian Journal of Plant Sciences,2006,5(4):598- 606.
    [32] Najeeb U,Xu L,Ali S,Jilani G,Gong H J,Shen W Q,Zhou W J.Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L.Journal of Hazardous Materials,2009,170(2/3):1156- 1163.
    [33] Guo H P,Chen H M,Hong C T,Jiang D A,Zheng B S.Exogenous malic acid alleviates cadmium toxicity in Miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation.Ecotoxicology and Environmental Safety,2017,141:119- 128.
    [34] Kaur R,Yadav P,Sharma A,Kumar Thukral A,Kumar V,Kaur Kohli S,Bhardwaj R.Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L.under Cd(II) toxicity.Ecotoxicology and Environmental Safety,2017,145:466- 475.
    [35] Schulze J,Tesfaye M,Litjens R H M G,Bucciarelli B,Trepp G,Miller S,Samac D,Allan D,Vance C P.Malate plays a central role in plant nutrition.Plant and Soil,2002,247(1):133- 139.
    [36] 周文彬,邱保胜.植物细胞内pH值的测定.植物生理学通讯,2004,40(6):724- 728.
    [37] 赵彦坤,张文胜,王幼宁,李科学,贾会珍,李霞.高pH对植物生长发育的影响及其分子生物学研究进展.中国生态农业学报,2008,16(3):783- 787.
    [38] Duarte B,Delgado M,Ca?ador I.The role of citric acid in cadmium and nickel uptake and translocation,in Halimione portulacoides.Chemosphere,2007,69(5):836- 840.
    [39] Chen Y X,Lin Q,Luo Y M,et al.The role of citric acid on the phytoremediation of heavy metal contaminated soil.Chemosphere,2003,50(6):807- 811.
    [40] 朱艳霞,魏幼璋,叶正钱,杨肖娥.有机酸在超积累植物重金属解毒机制中的作用.西北农林科技大学学报:自然科学版,2006,34(7):121- 126.
    [41] Nakata P A.Advances in our understanding of calcium oxalate crystal formation and function in plants.Plant Science,2003,164(6):901- 909.
    [42] Franceschi V R,Nakata P A.Calcium oxalate in plants:formation and function.Annual Review of Plant Biology,2005,56:41- 71.
    [43] 赵中秋,席梅竹.Cd对植物的氧化胁迫机理研究进展.农业环境科学学报,2007,26(S1):47- 51.
    [44] Mnasri M,Ghabriche R,Fourati E,Zaier H,Sabally K,Barrington S,Lutts S,Abdelly C,Ghnaya T.Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum:implication of organic acids in these processes.Frontiers in Plant Science,2015,6:156.
    [45] Lu L L,Tian S K,Yang X E,Peng H Y,Li T Q.Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii:the impact of citric acid and tartaric acid.Journal of Zhejiang University SCIENCE B,2013,14(2):106- 114.
    [46] Ebbs S D,Lasat M M,Brady D J,Cornish J,Gordon R,Kochian L V.Phytoextraction of cadmium and zinc from a contaminated soil.Journal of Environmental Quality,1997,26(5):1424- 1430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700