用户名: 密码: 验证码:
黄土丘陵区主要植物根系对土壤有机质和团聚体的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Main Plant Roots on Soil Organic Matter and Aggregates in Loess Hilly Region
  • 作者:赵富王 ; 王宁 ; 苏雪萌 ; 李秋嘉
  • 英文作者:ZHAO Fuwang;WANG Ning;SU Xuemeng;LI Qiujia;National Experimental Teaching Demonstration Center of Geography Science,College of Tourism and Environment, Shaanxi Normal University;
  • 关键词:黄土丘陵区 ; 根系特性 ; 土壤有机质 ; 土壤水稳性团聚体
  • 英文关键词:Loess hilly region;;root characteristics;;soil organic matter;;water stable soil aggregate
  • 中文刊名:水土保持学报
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:陕西师范大学地理科学与旅游学院陕西师范大学地理学国家级实验教学示范中心;
  • 出版日期:2019-10-15
  • 出版单位:水土保持学报
  • 年:2019
  • 期:05
  • 基金:国家重点研发计划项目(2017YFC0504702);; 国家自然科学基金项目(41501290,41571260);; 陕西省自然科学基金项目(2017JM4021)
  • 语种:中文;
  • 页:107-115
  • 页数:9
  • CN:61-1362/TV
  • ISSN:1009-2242
  • 分类号:S153.621;S152
摘要
植物根系是植物与土壤进行物质交换的通道,在土壤侵蚀严重、生态脆弱的黄土丘陵区,深入认识根系对土壤物理化学性质的影响具有重要意义。选取了白羊草(Bothriochloa ischaemum)、苔草(Carex lanceolata)、茭蒿(Artemisia leucophylla)、铁杆蒿(Artemisia sacrorum)、狼牙刺(Sophora viciifolia)、柠条(Caragana intermedia)6种植物作为研究对象,取0—10,10—20,20—30,30—40,40—50,50—60 cm土层根系和土样,分析不同土层各物种根长密度、根表面积密度、平均根直径、土壤有机质(SOM)、土壤容重以及各级水稳性团聚体重量百分含量。结果表明:所研究植物根系以细根为主。在0—20 cm土层中,白羊草、苔草根长密度显著大于其余植物(P<0.05),表现为苔草>白羊草>铁杆蒿>茭蒿>狼牙刺>柠条,平均根直径则相反。根系能不同程度地增加SOM含量,SOM含量与根系平均直径和根系表面积密度呈极显著的正相关关系(P<0.01)。在土壤剖面上,水稳性团聚体重量百分含量明显减少的是白羊草、苔草和铁杆蒿样地,水稳性团聚体重量百分含量随土层深度变化不明显的是茭蒿、狼牙刺和柠条样地。根表面积、根长密度能够显著增加0.5~2 mm水稳性团聚体重量百分含量(P<0.05),说明根系能够使小粒径团粒凝聚成更大粒径的土壤团粒。根系能够提高土壤有机质含量,增加中等粒径团聚体含量,改善土壤结构,提高土壤稳定性,对增加土壤抗蚀性起到重要作用。
        Plant root system is the channel of material exchange between vegetation and soil. In the loess hilly area with serious soil erosion and fragile ecology, it is great significance to deeply understand the influence of root system on soil physical and chemical properties. In this study, six plant species were taking as research objects, which were Bothriocheloa ischaemum, Carex lanceolata, Artemisia leucophylla, Artemisia gmelinii, Sophora viciifolia and Caragana intermedia. Roots and soil samples of 0-10, 10-20, 20-30, 30-40, 40-50 and 50-60 cm soil layers were taken. The root length density, root surface area density, mean root diameter, soil organic matter, soil bulk density and water stable aggregate content of each species in each soil layer were analyzed. The results showed that the roots of the species studied were mainly fine roots. In the 0-20 cm soil layer, the root length density of herbaceous plants was significantly higher than those of other species(P<0.05), which followed the order of B. ischaemum > C. lanceolata > A. leucophylla > A. gmelinii > S. viciifolia >C. intermedia, while the average root diameter was opposite. The root system could increase the SOM content in varying degrees, and the SOM content had a significant positive correlation with the root mean diameter and root surface area density(P<0.01). In the soil profile, the weight percentage of water-stable aggregate significantly decreased in the sample plots of B. ischaemum, C. lanceolata and A. sacrorum. The weight percentage of water-stable aggregates did not change significantly with depth in the sample plots of A. leucophylla, S. viciifolia and C. intermedia. Root surface area and root length density could significantly increase the weight percentage of water-stable agglomerates of 0.5 ~ 2 mm(P<0.05), which indicated that the root system could agglomerate small-size aggregates into larger-size soil aggregates. The above research results showed that root system could increase soil organic matter content and medium-size aggregate content, improve soil structure and soil stability, and played an important role in increasing soil corrosion resistance.
引文
[1] 邱扬,傅伯杰,王勇.土壤侵蚀时空变异及其与环境因子的时空关系[J].水土保持学报,2002,16(1):108-111.
    [2] 刘国彬,王国梁,上官周平,等.黄土高原地区水土保持科学研究的重点领域[J].中国水土保持,2008(12):37-39,72.
    [3] Chen N,Ma T Y,Zhang X P.Responses of soil erosion processes to land cover changes in the Loess Plateau of China:A case study on the Beiluo River basin [J].Catena,2016,136:118-127.
    [4] Wang Z J,Jiao J Y,Rayburg S,et al.Soil erosion resistance of “Grain for Green” vegetation types under extreme rainfall conditions on the Loess Plateau,China [J].Catena,2016,141:109-116.
    [5] Zhang B J,Zhang G H,Yang H Y,et al.Soil erodibility affected by vegetation restoration on steep gully slopes on the Loess Plateau of China [J].Soil Research,2018,56,712-723.
    [6] 李鹏,赵忠,李占斌,等.植被根系与生态环境相互作用机制研究进展[J].西北林学院学报,2002,17(2):26-32.
    [7] 罗永清,赵学勇,王涛,等.植物根系分解及其对生物和非生物因素的响应机理研究进展[J].草业学报,2017,26(2):197-207.
    [8] 蒋定生,范兴科,李新华,等.黄土高原水土流失严重地区土壤抗冲性的水平和垂直变化规律研究[J].水土保持学报,1995,9(2):1-8.
    [9] 刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报,2003,17(3):34-37.
    [10] Rillig M C,Mummey D L.Mycorrhizas and soil structure [J].New Phytologist,2006,171(1):41-53.
    [11] 韩凤朋,郑纪勇,张兴昌.黄土退耕坡地植物根系分布特征及其对土壤养分的影响[J].农业工程学报,2009,25(2):50-55.
    [12] 张彦军.复杂地形条件下根系对土壤有机碳的贡献[J].环境科学,2019,40(2):961-968.
    [13] Ktterer T,Bolinder M A,Andrén O,et al.Roots contribute more to refractory soil organic matter than above-ground crop residues,as revealed by a long-term field experiment [J].Agriculture,Ecosystems & Environment,2011,141(1/2):184-192.
    [14] 吕渡,杨亚辉,赵文慧,等.不同恢复类型植被细根分布及与土壤理化性质的耦合关系[J].生态学报,2018,38(11):3979-3987.
    [15] 吴彦,刘世全,付秀琴,等.植物根系提高土壤水稳性团粒含量的研究[J].土壤侵蚀与水土保持学报,1997,3(1):46-50.
    [16] Ma Z Y,Liu H Y,Mi Z R,et al.Climate warming reduces the temporal stability of plant community biomass production [J].Nature Communications,2017,8(8):e15378.
    [17] Yoder R E.A direct,method of aggregate,analysis of soils and a study of the physical nature of erosion losses [J].Journal of the American Society of Agronomy,1936,28(5):337-351.
    [18] 鲍士旦.土壤农化分析[M].3版.北京:农业出版社,1990:30-34.
    [19] 李裕元,邵明安,陈洪松,等.水蚀风蚀交错带植被恢复对土壤物理性质的影响[J].生态学报,2010,30(16):4306-4316.
    [20] 李萍,张波,李同录.黄土高原边坡特征与破坏规律的分区研究[J].地球科学与环境学报,2012,34(3):89-98.
    [21] 由政,姚旭,景航,等.不同演替阶段群落根系分布与土壤团聚体特征的协同变化[J].水土保持研究,2016,23(6):20-31.
    [22] Kris R,Kramer W,Peter J,et al.Root traits are multidimensional:Specific root length is independent from root tissue density and the plant economic spectrum [J].Journal of Ecology 2016,104(1):1299-1310.
    [23] 连纲,郭旭东,傅伯杰,等.黄土丘陵沟壑区县域土壤有机质空间分布特征及预测[J].地理科学进展,2006,25(2):112-122,142.
    [24] Ghafoor A,Poeplau C,Thomas K.Fate of straw-and root-derived carbon in a Swedish agricultural soil [J].Biology and Fertility of Soils,2017,53(2):257-267.
    [25] Burri K,Graf F,B?ll A,et al.Revegetation measures improve soil aggregate stability:A case study of a landslide area in Central Switzerland [J].Forest Snow and Landscape Research,2009,82(1):45-60.
    [26] Demenois J,Carriconde F,Bonaventure P,et al.Impact of plant root functional traits and associated mycorrhizas on the aggregate stability of a tropical Ferralsol [J].Geoderma,2018,312(1):6-16.
    [27] Carrie A,Haydu H,Robert C,et al.Soil aggregate stability under chaparral species in southern California [J].Geoderma,2018,310:201-208.
    [28] Vincent P,Catherine R,Alison D.et al.The root of the matter:Linking root traits and soil organic matter stabilization processes [J].Soil Biology and Biochemistry,2018,120:246-259.
    [29] Samuel A,Safya M,Claire C.The effects of organic inputs over time on soil aggregate stability-A literature analysis [J].Soil Biology & Biochemistry,2009,41(1):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700