用户名: 密码: 验证码:
酚酸类自毒物质微生物降解转化研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review on the Microbial Biodegradation and Metabolism of Autotoxic Phenolic Acids
  • 作者:李敏 ; 张丽叶 ; 张艳江 ; 朱娟娟 ; 马海军
  • 英文作者:Li Min;Zhang Liye;Zhang Yanjiang;Zhu Juanjuan;Ma Haijun;College of Biological Science and Engineering,Beifang University of Nationalities;Ningxia Grape & Wine Innovation Center;
  • 关键词:酚酸 ; 微生物 ; 降解 ; 机理
  • 英文关键词:phenolic acid;;microorganisms;;degradation;;mechanism
  • 中文刊名:生态毒理学报
  • 英文刊名:Asian Journal of Ecotoxicology
  • 机构:北方民族大学生物科学与工程学院;宁夏葡萄与葡萄酒技术创新中心;
  • 出版日期:2019-02-27 17:20
  • 出版单位:生态毒理学报
  • 年:2019
  • 期:03
  • 基金:宁夏自然科学基金项目(NZ17091);; 北方民族大学中央高校基本科研业务费专项资金资助(2017SKKY01,2016SKKY01)
  • 语种:中文;
  • 页:77-83
  • 页数:7
  • CN:11-5470/X
  • ISSN:1673-5897
  • 分类号:X172
摘要
自毒作用是一种发生在种内的生长抑制作用,尤其是植物残体与病原微生物的代谢产物对植物有致毒作用,并连同植物根系分泌的自毒物质一起影响植株代谢,最后导致自毒作用的发生。酚酸类化合物是多种农作物根系土壤中常见的自毒物质,由其导致的自毒作用日益制约现代农业增产增收。利用微生物降解自毒物质成为防治自毒作用的研究热点之一。然而,要达到实践应用的目标,阐明微生物降解转化酚酸类物质的规律与机制是重要前提。本文总结了近年来微生物降解酚酸类化合物的已有研究成果,发现目前已积累了多种具有降解效能的微生物资源;在微生物的作用下,酚酸类化合物常发生脱羧、氧化和羟基化等生化反应,进而转变成小分子含苯环有机化合物或者彻底矿化,不同微生物对酚酸类物质的代谢转化程度差异较大。在此基础上,本文分析提出该领域研究还需进一步挖掘新型具有高效降解性能的微生物资源、阐明微生物降解转化酚酸类化合物的选择性和环境安全性等基础科学问题。
        Autotoxicity refers to the phenomenon of plant growth inhibition caused by the chemicals from plant residues,metabolites of pathogenic microorganisms,and root exudates. The most common autotoxic compounds are phenolic acids. The autotoxicity is one of the major factors restricting the development of modern agriculture. Therefore,bio-degradation of autotoxins through the action of microorganisms is a hot topic in recent years. However,in order to achieve the goal of practical application,it is necessary to clarify the mechanism and regularity of microbial transformation of phenolic acids. This paper summarized many previous studies and found that there have been lots of microorganisms that possessed the ability of degading the phenolic acids,in which case,biochemical reactions such as decarboxylation,oxidation and hydroxylation occurred during the process of degradation. As a result of degradation,phenolic acids were converted into small molecules containing benzene ring or completely mineralized.The degree of metabolic transformation of phenolic acids could be totally different caused by different microorganisms. On this basis,new microbial strains capable of degadation of phenolic acids should be further exploited,and the issues such as degradation selectivity and environmental risks should also be expounded in the future.
引文
[1] Utkhede R S. Soil sickness,replant problem or replant disease and its integrated control[J]. Allelopathy Journal,2006,18(1):23-38
    [2] Bennett A J,Bending G D,Chandler D,et al. Meeting the demand for crop production:The challenge of yield decline in crops grown in short rotations[J]. Biological Reviews,2012,87(1):52-71
    [3]王晓辉.西瓜自毒物质阿魏酸降解放线菌筛选及其降解效果研究[D].杨凌:西北农林科技大学,2011:4-5Wang X H. Screening of ferulic acid degrading actinomycetes and their degradation effect[D]. Yangling:Northwest Agriculture and Forestry University,2011:4-5(in Chinese)
    [4]孙小霞,王海斌,何海斌,等.田间旱育条件下不同化感潜力水稻根际土壤酚酸类和萜类物质分析[J].中国生态农业学报,2014,22(7):806-812Sun X X,Wang H B,He H B,et al. Analysis of phenolic acids and terpenoids in rhizosphere soils of different allelopathic rice varieties under dry field conditions[J].Chinese Journal of Eco-Agriculture,2014,22(7):806-812(in Chinese)
    [5] Rice E L. Allelopathy. 2nd ed.[M]. Orlando:Academic Press,1984:1-2
    [6]王建花,陈婷,林文雄.植物化感作用类型及其在农业中的应用[J].中国生态农业学报,2013,21(10):1173-1183Wang J H,Chen T,Lin W X. Plant allelopathy types and their application in agriculture[J]. Chinese Journal of Eco-Agriculture,2013,21(10):1173-1183(in Chinese)
    [7] Li Z H,Wang Q,Ruan X,et al. Phenolics and plant allelopathy[J]. Molecules,2010,15(12):8933-8952
    [8] Blum U. Plant-PlantAllelopathic Interactions II:Laboratory Bioassays for Watersoluble Compounds with an Emphasis on Phenolic Acids[M]. Berlin:Springer Netherlands,2014:237-272
    [9]田给林.连作草莓土壤酚酸类物质的化感作用及其生物调控研究[D].北京:中国农业大学,2015:5-6Tian G L. Allelopathic effect and biological regulation of phenolic acids in the continuous cropping strawberry soil[D]. Beijing:China Agriculture University,2015:5-6(in Chinese)
    [10] Jose C M,Torres L M B,Shirasuna R T,et al. Phytotoxic effects of phenolic acids from Merostachys riedeliana,a native and overabundant Brazilian bamboo[J].Chemoecology,2016,26(6):235-246
    [11]李贺敏,张红瑞,沈玉聪,等.酚酸类物质对白菜幼苗和生理特性的影响[J].河南农业大学学报,2017,51(5):626-633Li H M,Zhang H R,Shen Y C,et al. Effects of phenolic-acids on growth and physiological characteristics of cabbage seedlings[J]. Journal of Henan Agricultural University,2017,51(5):626-633(in Chinese)
    [12] Chomel M,Fernandez C,Bousquet-Mélou A,et al.Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones[J]. Journal of Ecology,2014,102(2):411-424
    [13]谢星光,陈晏,卜元卿,等.酚酸类物质的化感作用研究进展[J].生态学报,2014,34(22):6417-6428Xie X G,Chen Y,Bu Y Q,et al. A review of allelopathic researches on phenolic acids[J]. Acta Ecologica Sinica,2014,34(22):6417-6428(in Chinese)
    [14] Baziramakenga R,Leroux G D,Simard R R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots[J]. Journal of Chemical Ecology,1995,21(9):1271-1285
    [15] Blum U,Gerig T M. Relationships between phenolic acid concentrations,transpiration,water utilization,leaf area expansion,and uptake of phenolic acids:Nutrient culture studies[J]. Journal of Chemical Ecology,2005,31(8):1907-1932
    [16] Yang C M,Chang I F,Lin S J,et al. Effects of three allelopathic phenolics on chlorophyll accumulation of rice(Oryza sativa)seedlings:II. Stimulation of consumption-orientation[J]. Botanical Bulletin of Academia Sinica,2004,45(2):119-125
    [17] Zhou Y H,Yu J Q. Allelochemicals and Photosynthesis.Allelopathy:A Physiological Process with Ecological Implications Allelopathy[M]. Berlin:Springer Netherlands,2006:127-139
    [18] Li P D,Wang X X,Li Y L,et al. The contents of phenolic acids in continuous cropping peanut and their allelopathy[J]. Acta Ecologica Sinica,2010,30(8):2128-2134
    [19]孙秀.黄瓜根际土壤肉桂酸降解菌株的筛选及其功能特性研究[D].泰安:山东农业大学,2014:37-47Sun X. Screening and functional characterization of cinnamic acid-degrading strains from cucumber rhizosphere soil[D]. Tai’an:Shandong Agricultural University,2014:37-47(in Chinese)
    [20] Gauri S S,Mandal S M,Dey S,et al. Biotransformation of p-coumaric acid and 2,4-dichlorophenoxy acetic acid by Azotobacter sp. strain SSB81[J]. Bioresource Technology,2012,126(4):350-353
    [21]王延平,王华田,许坛,等.酚酸对杨树人工林土壤养分有效性及酶活性的影响[J].应用生态学报,2013,24(3):667-674Wang Y P,Wang H T,Xu T,et al. Effects of exogenous phenolic acid on soil nutrient availability and enzyme activities in a poplar plantation[J]. Chinese Journal of Applied Ecology,2013,24(3):667-674(in Chinese)
    [22]刘苹,赵海军,李庆凯,等.三种酚酸类化感物质对花生根际土壤微生物及产量的影响[J].中国油料作物学报,2018,40(1):101-109Li P,Zhao H J,Li Q K,et al. Effects of three phenolic acid allelochemicals on rhizosphere soil microbes and pod yield of peanut(Arachis hypogaea L.)[J]. Chinese Journal of Oil Crop Sciences,2018,40(1):101-109(in Chinese)
    [23] Wang Y,Li C,Wang Q,et al. Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal poplar plantation forest soils[J]. Journal of Soils&Sediments,2016,16(7):1858-1870
    [24]王兴祥,张桃林,戴传超.连作花生土壤障碍原因及消除技术研究进展[J].土壤,2010,42(4):505-512Wang X X,Zhang T L,Dai C C. Advance in mechanism and countermeasures of peanut succession monocropping obstacles[J]. Soils,2010,42(4):505-512(in Chinese)
    [25] Zhang Z Y,Pan L P,Li H H. Isolation,identification and characterization of soil microbes which degrade phenolic allelochemicals[J]. Journal of Applied Microbiology,2010,108(5):1839-1849
    [26]谢越,马忠友,孔维芳,等.1株阿魏酸降解菌的筛选与降解特征研究[J].土木建筑与环境工程,2014,36(6):106-111Xie Y,Ma Z Y,Kong W F,et al. Ferulic acid degradation bacterium AWS4B screening and its degradation characteristics[J]. Journal of Civil,Architectural&Environmental Engineering,2014,36(6):106-111(in Chinese)
    [27] Vasudevan N,Mahadevan A. Utilization of complex phenolic compounds by Acinetobacter sp.[J]. Applied Microbiology&Biotechnology,1992,37(3):404-407
    [28] Baqueiropea I,Rodríguezserrano G,Gonzálezzamora E,et al. Biotransformation of ferulic acid to 4-vinylguaiacol by a wild and a diploid strain of Aspergillus niger[J]. Bioresource Technology,2010,101(12):4721-4724
    [29]陈红歌,杜国营,胡元森,等.黄孢原毛平革菌(Phanerochaete chrysosporium)对3种酚酸物质的降解作用[J].安全与环境学报,2006,6(5):8-10Chen H G,Du G Y,Hu Y S,et al. On degradation of three phenolic acids by Phanerochaete chrysosporium[J]. Journal of Safety and Environment,2006,6(5):8-10(in Chinese)
    [30] Chen Y,Peng Y,Dai C C,et al. Biodegradation of 4-hydroxybenzoic acid by Phomopsis liquidambari[J].Applied Soil Ecology,2011,51(1):102-110
    [31]马元元,陈向向,李敏,等.微小杆菌(Exiguobacterium sp.)对肉桂酸降解行为[J].微生物学通报,2017,44(9):2079-2088Ma Y Y,Chen X X,Li M,et al. Degradation of cinnamic acid by Exiguobacterium sp. strain[J]. Microbiology China,2017,44(9):2079-2088(in Chinese)
    [32] Sachan A,Ghosh S,Sen S K,et al. Co-production of caffeic acid and p-hydroxybenzoic acid from p-coumaric acid by Streptomyces caeruleus,MTCC 6638[J]. Applied Microbiology&Biotechnology,2006,71(5):720-727
    [33] Xie X G,Dai C C. Biodegradation of a model allelochemical cinnamic acid by a novel endophytic fungus Phomopsis liquidambari[J]. International Biodeterioration&Biodegradation,2015,104:498-507
    [34] Said S,Neves F M,Griffiths A J F. Cinnamic acid inhibits the growth of the fungus Neurospora crassa,but is eliminated as acetophenone[J]. International Biodeterioration&Biodegradation,2004,54(1):1-6
    [35] Bugg T D H,Winfield C J. Enzymatic cleavage of aromatic rings:Mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways[J]. Natural Product Reports, 1998, 15(15):513-530
    [36] Bugg T D,Ahmad M,Hardiman E M,et al. Pathways for degradation of lignin in bacteria and fungi[J]. Natural Product Reports,2011,28(12):1883-1896
    [37] Bayly R C,Wigmore G J. Metabolism of phenol and cresols by mutants of Pseudomonas putida[J]. Journal of Bacteriology,1973,113(3):1112-1120
    [38] Krastanov A,Alexieva Z,Yemendzhiev H. Microbial degradation of phenol and phenolic derivatives[J]. Engineering in Life Sciences,2013,13(1):76-87
    [39] Jones K H,Trudgill P W,Hopper D J. Evidence of two pathways for the metabolism of phenol by Aspergillus fumigates[J]. Archives of Microbiology,1995,163(3):176-181
    [40] Hardisson C,Sala-Trepat J M,Stanier R Y. Pathways for the oxidation of aromatic compounds by Azotobacter[J]. Journal of General Microbiology,1969,59(1):1-11
    [41] Watanabe K,Yamamoto S,Hino S,et al. Population dynamics of phenol-degrading bacteria in activated sludge determined by gyr B-targeted quantitative PCR[J]. Applied&Environmental Microbiology,1998,64(4):1203-1209
    [42] Topalova Y,Ribarova I,Kozuharov D,et al. Structural/functional changes in activated sludge in PCP-and ONP-biodegradation technologies[J]. Biotechnology&Biotechnological Equipment,2007,21(1):28-33
    [43] Alexander M,Lustigman B K. Effect of chemical structure on microbial degradation of substituted benzenes[J]. Journal of Agricultural and Food Chemistry,1966,14(4):410-413

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700