用户名: 密码: 验证码:
基质级配方式对生态介质箱修复黑臭水体的效果比较
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect Comparison of the Substrates Grading Methods on the Restoration of Black-Odorous Water Bodies by the Ecological Media Box
  • 作者:郭炜超 ; 王趁义 ; 滕丽华 ; 杨娜 ; 李琳琳
  • 英文作者:GUO Weichao;WANG Chenyi;TENG Lihua;YANG Na;LI Linlin;College of Biology and Environment, University of Zhejiang Wanli;Ningbo Shengqian Environmental Technology Development Co., Ltd.;
  • 关键词:水体富营养化 ; 生态介质箱 ; 级配方式 ; 净化效果 ; 原位修复
  • 英文关键词:eutrophication of water body;;ecological media box;;grading method;;purification effects;;in situ remediation
  • 中文刊名:水土保持学报
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:浙江万里学院生物与环境学院;宁波晟乾环境技术开发有限公司;
  • 出版日期:2019-04-15
  • 出版单位:水土保持学报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(21207036);; 浙江省自然科学基金项目(LY16C150002);; 宁波市科技惠民项目(2017C50010);; 浙江省“生物工程”一流学科开放基金项目(KF2018004);; 浙江省“生物工程”一流学科学生创新项目(CX2017005,CX2017003);; 浙江万里学院生态养殖模式与尾水水质调控科技特派团队项目;浙江万里学院引进人才重点项目(1741000530)
  • 语种:中文;
  • 页:358-364
  • 页数:7
  • CN:61-1362/TV
  • ISSN:1009-2242
  • 分类号:X52
摘要
利用人工静态模拟试验,研究基质级配方式对自主设计的生态介质箱对黑臭水体的净化效果及其对水生植物的N、P积累能力和生长的影响。结果表明,随着处理时间的延长,各组对污染物的去除率逐渐升高,其中正级配组和反级配组对TP、TN和NH_4~+—N的去除效果均优于单一的植物组和基质组;正级配组对水体中TP的去除效果优于反级配组,其去除率达到66.9%,且正级配组中的植物对TP的积累量大于反级配组与植物组;而反级配组更有益于对TN和NH_4~+—N的去除,其去除率分别达到69.1%与87.4%,且反级配组中的植物对TN的积累量大于正级配组与植物组;生态介质箱中的植物因素对脱氮除磷的贡献率较低,N、P的去除主要通过非植物因素(基质和微生物);除空白组外,各组对COD_(Mn)的去除无显著差异,说明基质与植物对COD_(Mn)的直接去除作用不明显,更多地依靠于基质与植物载体上附着的微生物的作用;含有环境吸附材料基质的试验组(正级配组、反级配组和基质组)能使水体pH上升,可有效调节酸性水体;水生植物苦草(Vallisneria natans(Lour.)Hara)直接植入底泥(植物组)的方式更适于植物生长。因此,可通过替换级配方式来满足不同N、P污染程度水体的修复效果。
        The effects of substrates size grading on the purification of black and odorous water by self-designed ecological media boxes and their effects on the accumulation and growth of N and P in aquatic plants were studied by artificial static simulation test. The results showed that with the prolongation of treatment time, the removal rate of each pollutant increased gradually. The removal effect of TP, TN and NH_4~+—N in both progressively-graded groups, anti-graded group was better than that in single plant group and matrix group. The removal efficiency of TP in progressively-graded group was better than that in anti-gradation group, its removal rate reached 66.9%. The accumulation of TP in progressively-graded group was better than that in anti-gradation group and plant group. But the removal efficiency of TN and NH_4~+—N in water in anti-graded group was better than those in progressively-graded group, the removal rates reached 69.1% and 87.4% respectively. The accumulation of TN in anti-gradation group was better than those in progressively-graded group and plant group. The plant factors in the ecological media boxes had a low contribution rate to nitrogen and phosphorus removal. The removal of N and P was mainly through non-plant factors(matrix, microbe). However, except for the blank group, there was no significant difference in the removal of COD_(Mn) between the groups, indicating that the direct removal of COD_(Mn) by substrates and plants is not obvious, and it depends more on the role of microorganisms attached to the substrate and plant carriers. The experimental group containing the mineral matrix(progressively-graded group, anti-gradation group, and matrix group) could raise the pH of water and effectively regulate the acidic water body. The way in which aquatic plants(Vallisneria natans(Lour.) Hara) were directly implanted into the sediment(plant group) is more suitable for plant growth. Therefore, the effect of repairing water bodies with different N, P pollution levels can be satisfied by replacing the substrates size gradations.
引文
[1] 郭炜超,徐斌,王趁义,等.黑臭河水体治理技术的研究现状与进展[J].水处理技术,2018,44(8):1-5.
    [2] He D F, Chen R R, Zhu E H, et al. Toxicity bioassays for water from black-odor rivers in Wenzhou, China[J].Environmental Science and Pollution Research International,2015,22(3):1731-1742.
    [3] 黄丽芬,张蓉,余俊,等.弱光下氮素配施对杂交水稻氮磷钾吸收分配的效应研究[J].核农学报,2014,28(12):2261-2268.
    [4] 王趁义,赵欣园,藤丽华,等.碱蓬浮床对海水养殖尾水中氮磷修复效果研究[J].广西植物,2018,38(6):696-703.
    [5] 张翔凌.不同基质对垂直流人工湿地处理效果及堵塞影响研究[D].武汉:中国科学院水生生物研究所,2007.
    [6] Dong H, Qiang Z, Li T, et al. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water[J].Journal of Environmental Sciences,2012,24(4):596-601.
    [7] 朱文博,王洪秀,柳翠,等.河道曝气提升河流水质的WASP模型研究[J].环境科学,2015,36(4):1326-1331.
    [8] 苏发文,高鹏程,来琦芳,等.铜绿微囊藻和小球藻对水环境pH的影响[J].中国水产科学,2016,23(6):1380-1388.
    [9] 张来甲,叶春,李春华,等.不同生物量苦草在生命周期的不同阶段对水体水质的影响[J].中国环境科学,2013,33(11):2053-2061.
    [10] 樊恒亮,谢丽强,宋晓梅,等.沉水植物对水体营养的响应及氮磷积累特征[J].环境科学与技术,2017,40(3):42-48.
    [11] 唐朝春,刘名,陈惠民,等.吸附除磷技术的研究进展[J].水处理技术,2014,40(9):1-7.
    [12] Wang Z, Dong J, Liu L, et al. Study of oyster shell as a potential substrate for constructed wetlands[J].Water Science and Technology: A Journal of the International Association on Water Pollution Research,2013,67(10):2265-2272.
    [13] 胡杰,王晓俊,王趁义,等.碱蓬浮床对海水养殖尾水的修复效果[J].水土保持通报,2018,38(2):281-284.
    [14] 魏儒平,闫诚,杨欣妍,等.强化生物除磷系统的功能微生物研究进展[J].生物技术通报,2017,33(10):1-8.
    [15] 武俊梅,张翔凌,王荣,等.垂直流人工湿地系统基质优化级配研究[J].环境科学,2010,31(5):1227-1232.
    [16] 王丽莎,李希,甘蕾,等.亚热带丘陵区湿地水生植物组合模式拦截氮磷的研究[J].生态环境学报,2017,26(9):1577-1583.
    [17] 张修稳,李锋民,卢伦,等.10种人工湿地填料对磷的吸附特性比较[J].水处理技术,2014,40(3):49-52.
    [18] Bartucca M L, Mimmo T, Cesco S, et al. Nitrate removal from polluted water by using a vegetated floating system[J].Science of the Total Environment,2016,542:803-808.
    [19] Guo Y, Liu Y, Zeng G, et al. A restoration-promoting integrated floating bed and its experimental performance in eutrophication remediation[J].Journal of Environmental Sciences,2014,26(5):1090-1098.
    [20] 胡绵好,奥岩松,杨肖娥,等.不同N水平的富营养化水体中经济植物净化能力比较研究[J].水土保持学报,2007,21(2):147-150.
    [21] Li F M, Lu L, Zheng X, et al. Three-stage horizontal sub-surface flow constructed wetlands for organics and nitrogen removal: Effect of aeration[J].Ecological Engineering,2014,68(1):90-96.
    [22] 刘波,王文林,凌芬,等.曝气充氧条件下污染河道氨挥发特性模拟[J].生态学报,2012,32(23):7270-7279.
    [23] Lee S, Maniquiz-Redillas M C, Kim L H. Setting basin design in a constructed wetland using TSS removal efficiency and hydraulic retention time[J]. Journal of Environmental Sciences,2014,26(9):1791-1796.
    [24] 张嵘梅,马博馨,杨志杰,等.沉水植物苦草属在水体环境修复中的研究进展和应用现状[J].中国农学通报,2016,32(28):144-154.
    [25] 孙鸿,杨斌武,韩加寿,等.沸石和活性炭处理氨氮废水的实验研究[J].环境科学与技术,2012,35(61):289-291.
    [26] Fried A, McKeen S, Sewell S, et al. Photochemistry of formaldehyde during the 1993 tropospheric OH potochemistry experiment[J].Journal of Eophyeical Research,1997,102(5):6283-6296.
    [27] 周玥,韩玉国,张梦,等.4种不同生活型湿地植物对富营养化水体的净化效果[J].应用生态学报,2016,27(10):3353-3360.
    [28] He S B, Gao J W, Chen X C, et al. Nitrogen removal in micro-polluted surface water by the combined process of bio-filter and ecological gravel bed[J].Water Science and Technology,2013,67(10):2356-2362.
    [29] 黄永芳,杨秋艳,张太平,等.水培条件下两种植物根系分泌特征及其与污染物去除的关系[J].生态学杂志,2014,33(2):373-379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700