用户名: 密码: 验证码:
不同放牧强度对典型草原土壤胞外酶活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of different grazing intensities on soil extracellular enzyme activities in a typical steppe grassland
  • 作者:张东 ; 钞然 ; 万志强 ; 梁存柱 ; 杨劼 ; 包铁军 ; 高清竹
  • 英文作者:ZHANG Dong;CHAO Ran;WAN Zhiqiang;LANG Cunzhu;YANG Jie;BAO Tiejun;GAO Qingzhu;College of Ecology and Environment,Inner Mongolia University;Institute of Environment and Sustainable Development in Agriculture,CAAS;College of Geography Science,Inner Mongolia Normal University;
  • 关键词:土壤微生物量 ; 铵态氮 ; 硝态氮 ; 土壤深度
  • 英文关键词:microbial biomass;;ammonium nitrogen;;nitrate nitrogen;;soil depth
  • 中文刊名:干旱区资源与环境
  • 英文刊名:Journal of Arid Land Resources and Environment
  • 机构:内蒙古大学生态与环境学院;中国农业科学院农业环境与可持续发展研究所;内蒙古师范大学地理科学学院;
  • 出版日期:2019-07-17
  • 出版单位:干旱区资源与环境
  • 年:2019
  • 期:09
  • 基金:中央级公益性科研院所基本科研业务费专项(BSRF201713)资助
  • 语种:中文;
  • 页:147-153
  • 页数:7
  • CN:15-1112/N
  • ISSN:1003-7578
  • 分类号:S812.2
摘要
与碳(C)、氮(N)和磷(P)分解矿化相关的土壤胞外酶的相对活性可以揭示微生物的生长和代谢过程。为探讨不同放牧强度对典型草原土壤胞外酶活性的影响,本研究对不同放牧强度下0-10和10-20cm土层的胞外酶活性展开调查。本研究的胞外酶包括:β-1,4-葡萄糖苷酶(BG)、β-1,4-N-乙酰葡糖氨糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)、磷酸酶(AP)。结果显示:0-10cm土层,轻度放牧强度显著增加NAG和LAP活性;中度放牧强度显著增加了BG, NAG, LAP和AP活性;重度放牧强度显著增加LAP活性。10-20cm土层,轻度放牧强度显著增加NAG和LAP活性;中度放牧强度显著增加BG, NAG和LAP活性。随放牧强度的增加,两个土层土壤胞外酶活性均呈先增加后降低趋势;随土壤深度增加酶活性均呈降低趋势。冗余分析结果表明,土壤胞外酶活性(EEA)在0-10cm土层主要受微生物碳、铵态氮和土壤水分的影响,而10-20cm层受微生物氮、pH值、土壤水分和硝态氮的影响。在本研究区域尺度上,轻度和中度放牧强度下的土壤胞外酶具有更高的活性。
        Grazing affects soil extracellular enzyme activities(EEA) which are considered as a quantitative indicator of biogeochemical cycle. In this study, we conducted an experiment of different grazing intensities including contral(CK), light-grazing(L), media-grazing(M) and heavy grazing(H) with three replicates in a typical steppe in Inner Mongolia for four years(2014-2017). We investigated the six-year responses of soil EEA to different grazing intensities at two depths of 0-10 and 10-20 cm. These extracellular enzymes included β-1,4-glucosidase(BG), β-1,4-N-acetylglucosaminidase(NAG), Leucine aminopeptidase(LAP) and phosphatases(AP). The results showed that light grazing significantly increased NAG and LAP at the 0-10 cm depth and NAG and LAP at the 10-20 cm depth. Media grazing significantly increased BG, NAG, LAP and AP in the surface and BG, NAG and LAP in the subsurface. Heavy grazing significantly increased LAP in the surface. Redundancy analysis indicated that the patterns of EEA were mainly driven by soil microbial biomass carbon, moisture and NH~+_4-N in the surface, while by soil microbial biomass nitrogen, pH and NO~-_3N in the subsurface. Our results suggested that soil EEA responded differentially to different grazing intensities at two depths in this region, which may have implications for carbon and nutrient cycling under grazing.
引文
[1] Moorhead D L,Sinsabaugh R L.Simulated patterns of litter decay predict patterns of extracellular enzyme activities[J].Applied Soil Ecology,2000,14(1):71-79.
    [2] 王冰冰,曲来叶,马克明,等.岷江上游干旱河谷优势灌丛群落土壤生态酶化学计量特征[J].生态学报,2015,35(18):6078-6088.
    [3] Sinsabaugh R L,Hill B H,Shah J J F.Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J].Nature,2010,462:795-798.
    [4] Sinsabaugh,R L,Lauber C L,Weintraub M N,et al.Stoichiometry of soil enzyme activity at global scale[J].Ecology Letters,2008,11:1252-1264.
    [5] Waring B G,Weintraub S R,Sinsabaugh R L.Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils[J].Biogeochemistry,2014,117(1):101-113.
    [6] 郭群,胡中民,李轩然,等.降水时间对内蒙古温带草原地上净初级生产力的影响[J].生态学报,2013,33(15):4808-4817.
    [7] 安慧,徐坤.放牧干扰对荒漠草原土壤性状的影响[J].草业学报,2013,22(4):35-42.
    [8] Clegg C D.Impact of cattle grazing and inorganic fertilizer additions to managed grasslands on the microbial community composition of soils[J].Applied Soil Ecology,2006,31(1-2):73-82.
    [9] 曹淑宝,刘全伟,王立群,等.短期放牧对草甸草原土壤微生物与土壤酶活性的影响[J].微生物学通报,2012,39(6):741-748.
    [10] Chuan X Z.Effect of Grazing on Litter Decomposition and Extracellular Enzyme Activity across Agro-climatic Subregions in Alberta[D].Alberta:Food & Nutritional Science University of Alberta,2017:5-8.
    [11] Hewins D B,Fatemi F,Adams B,et al.Grazing,regional climate and soil biophysical impacts on microbial enzyme activity in grassland soil of western Canada[J].Pedobiologia,2015,58(5-6):201-209.
    [12] Bell J M,Robinson C A,Schwartz R C.Changes in soil properties and enzymatic activities following manure applications to a rangeland[J].Rangeland Ecology & Management,2006,59(3):314-320.
    [13] Liu X,Lindemann W C,Whitford W G,et al.Microbial diversity and activity of disturbed soil in the northern Chihuahuan Desert[J].Biology and Fertility of Soils,2000,32(3):243-249.
    [14] Patra A K,Abbadie L,Clays-Josserand A,et al.Effects of Grazing on microbial functional groups involved in soil N dynamics[J].Ecological Monographs,2005,75(1):65-80.
    [15] 王英舜,贺俊杰.1961-2010年锡林浩特地区夏季降雨量特征的小波分析[J].草业科学,2014,31(11):2021-2025.
    [16] Wu J G,Zhang Q,Li A,et al.Historical landscape dynamics of Inner Mongolia:patterns,drivers,and Impacts[J].Landscape Ecology,2015,30(9):1579-1598.
    [17] 吕湾湾.放牧对典型草原优势植物水分利用率的影响[D].呼和浩特:内蒙古大学,2016:6-7.
    [18] Kennedy N,Brodie E,Connolly J,et al.Impact of lime,nitrogen and plant species on bacterial community structure in grassland microcosms[J].Environmental Microbiology,2004,6(10):1070-1080.
    [19] Bell T H,Henry H A L.Fine scale variability in soil extracellular enzyme activity is insensitive to rain events and temperature in a mesic system[J].Pedobiologia,2011,54(2):141-146.
    [20] 仲波,孙庚,陈冬明,等.不同恢复措施对若尔盖沙化退化草地恢复过程中土壤微生物生物量碳氮及土壤酶的影响[J].生态环境学报,2017,26(3):392-399.
    [21] 焦婷,常根柱,周学辉,等.温性荒漠化草原不同放牧强度下土壤酶与肥力的关系[J].草地学报,2009,17(5):581-587.
    [22] 井大炜,张红,王明友.牛粪对西瓜根际土壤微生物多样性及氮素利用率的影响[J].核农学报,2014,28(11):2102-2107.
    [23] Kardol P,Cregger M A,Classen C A T.Soil ecosystem functioning under climate change:plant species and community effects[J].Ecology,2010,91(3):767-781.
    [24] Sinsabaugh R L,Shah J J F.Ecoenzymatic stoichiometry and ecological theory[J].Annual Review of Ecology Evolution & Systematics,2012,43(1):313-343.
    [25] Cenini V L,Fornara D A,McMullan G,et al.Linkages between extracellular enzyme activities and the carbon and nitrogen content of grassland soils[J].Soil Biology & Biochemistry,2016,96:198-206.
    [26] 陈冬明,张楠楠,刘琳,等.不同恢复措施对若尔盖沙化草地的恢复效果比较[J].应用与环境生物学报,2016,22(4):573-578.
    [27] 闫瑞瑞,辛晓平,王旭,等.不同放牧梯度下呼伦贝尔草甸草原土壤碳氮变化及固碳效应[J].生态学报,2014,34(6):1587-1595.
    [28] Zhou X,Chen C,Wang Y,et al.Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland[J].Science of The Total Environment,2013,444:552-558.
    [29] Holt J A.Grazing pressure and soil carbon,microbial biomass and enzyme activities in semi-arid northeastern Australia[J].Applied Soil Ecology,1997,5(2):143-149.
    [30] 鲁艳红,杨曾平,郑圣先,等.长期施用化肥、猪粪和稻草对红壤水稻土化学和生物化学性质的影响[J].应用生态学报,2010,21(4):921-929.
    [31] 郑慧,祁士华,王志勇,等.高位池养虾对土壤微生物脂肪酸和土壤酶活及其表征的土壤质量的影响[J].应用与环境生物学报,2011,17(1):69-72.
    [32] Fterich A,Mahdhi M,Lafuente A,et al.Taxonomic and symbiotic diversity of bacteria isolated from nodules of Acacia tortilis subsp.raddiana in arid soils of Tunisia[J].Canadian Journal of Microbiology,2012,58(6):738-51.
    [33] Banerjee M R,Burton D L,Grant M C A.Influence of Pasture Management on Soil Biological Quality[J].Journal of Range Management,2000,53(1):127-133.
    [34] 滕泽琴,李旭东,韩会阁,张春平,傅华.土地利用方式对陇中黄土高原土壤磷组分的影响[J].草业学报,2013,22(2):30-37.
    [35] 阳小成,苗原,刘银占.川西北高寒草甸不同放牧模式对土壤呼吸的影响[J].生态学报,2015,36(17):5371-5378.
    [36] 赵帅,张静妮,赖欣,等.放牧与围封对呼伦贝尔针茅草原土壤酶活性及理化性质的影响[J].中国草地学报,2011,33(1):71-76.
    [37] Sardans J,Pe?uelas J,Estiarte M.Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland[J].Applied Soil Ecology,2008,39(2):223-235.
    [38] Bell T H,Klironomos J N,Henry H A L.Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition[J].Soil Science Society of America Journal,2010,74(3):820-828.
    [39] Frey S D,Drijber R,Smith H,et al.Microbial biomass,functional capacity,and community structure after 12 years of soil warming[J].Soil Biology & Biochemistry,2008,40(11):2904-2907.
    [40] Fierer N,Strickland M S,Liptzin D,et al.Global patterns in belowground communities[J].Ecology Letters,2009,12(11):1238-1249.
    [41] Sinsabaugh R L,Carreiro M M,Repert D A.Allocation of extracellular enzymatic activity in relation to litter composition,N deposition,and mass loss[J].Biogeochemistry,2002,60(1):1-24.
    [42] Allison S D,Wallenstein M D,Bradford M A.Soil-carbon Response to Warming Dependent on Microbial Physiology[J].Nature Geoscience,2010,3(5):336-340.
    [43] Schimel J P,Weintraub M N.The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil:a theoretical model[J].Soil Biology & Biochemistry,2003,35(4):549-563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700