用户名: 密码: 验证码:
开架式观测型ROV定点悬停控制方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control Method for Fixed Point Hovering of Open-shelf Observational ROV
  • 作者:高胜 ; 陈昆 ; 张利巍 ; 范立华 ; 王克宽
  • 英文作者:Gao Sheng;Chen Kun;Zhang Liwei;Fan Lihua;Wang Kekuan;Machinery Science and Engineering College,Northeast Petroleum University;CNPC Engineering Technology R&D Company Limited;
  • 关键词:ROV ; PID ; 模糊控制 ; 模糊PID ; 波浪 ; 海流
  • 英文关键词:ROV;;PID;;fuzzy control;;fuzzy PID;;wave;;sea current
  • 中文刊名:石油机械
  • 英文刊名:China Petroleum Machinery
  • 机构:东北石油大学机械科学与工程学院;中国石油集团工程技术研究有限公司;
  • 出版日期:2019-02-10
  • 出版单位:石油机械
  • 年:2019
  • 期:02
  • 基金:中石油“十三五”科技重大专项“中石油水下检测维护机器人系统开发关键技术研究”(GCY-2C-17-6-1)
  • 语种:中文;
  • 页:59-68
  • 页数:10
  • CN:42-1246/TE
  • ISSN:1001-4578
  • 分类号:TP242;TP273
摘要
定点悬停能力是水下机器人重要的控制性能之一。水下机器人在水下运动时常受到波浪和海流等影响,使常规运动控制方法存在稳定性差的问题,需要一种抗干扰能力强和适应性好的运动控制方法。针对设计的ROV和工作要求,分别设计了传统PID控制器、模糊控制器和模糊PID控制器,并通过仿真分析对比了在海流和波浪等干扰的条件下各控制器的动态性能。试验结果表明:在定点悬停控制中,PID控制器适应能力差,抗干扰能力弱,对环境变化敏感;模糊控制器在复杂环境中具有良好的响应特性和抗干扰能力,但存在稳态误差,无法实现精准控制;模糊PID综合了两者的优势,既提高了PID控制器的响应速度和抗干扰能力,又弥补了模糊控制存在稳态误差的缺点,但抗干扰性能还是远不及模糊控制器。因此,当控制精度要求不是很高时,建议使用模糊控制器更好,当需要精准控制且控制误差在允许范围内时,建议使用模糊PID控制器。研究成果对水下机器人工程实践指导具有重要意义。
        Fixed-point hovering capability is one of the important control performances of underwater ROV.During underwater motion,ROV is often affected by waves and currents,which makes the conventional motion control unstable. A motion control method with strong anti-interference ability and good adaptability is needed. According to the designed ROV and working requirements,the traditional PID controller,fuzzy controller and fuzzy PID controller are designed. The dynamic performance of each controller under the conditions of sea current,wave and other disturbances is compared by simulation analysis. The test results show that in the fixed-point hovering control,the PID controller has poor adaptability and weak anti-interference ability and is sensitive to environmental changes. The fuzzy controller has good response characteristics and anti-interference ability in complex environments,but has steady state error that cannot achieve precise control. The fuzzy PID combines the advantages of both,which not only improves the response speed and anti-interference ability of the PID controller,but also overcomes the shortcomings of the fuzzy control with steady-state error. However,the anti-interference performance is far less than fuzzy controller. When the control accuracy requirement is not very high,a fuzzy controller is proposed. It is recommended to use a fuzzy PID controller when precise control is required and the control error is within the allowable range. The research results are of great guiding significance to the engineering practice of underwater ROV.
引文
[1]魏延辉,张皓渊.水下作业型ROV定深控制系统的设计[J].中国科技论文,2016,11(8):898-903.WEI Y H,ZHANG H Y.Design of the depth control system for underwater work-class ROV[J].China Sciencepaper,2016,11(8):898-903.
    [2]NAG A,PATEL S S,KISHORE K,et al.A robust H-infinity based depth control of an autonomous underwater vehicle[C]∥2013 International Conference on Advanced Electronic System.Pilani:IEEE Computer Society,2013:68-73.
    [3]WATSON S A,GREEN P N.Depth control formicroautonomous underwater vehicles:simulation and experimention[J].International Journal of Advanced Robotic System,2014,11(1):1-10.
    [4]GENG T,ZHAO J.Generalized predictive control withconstraints for autonomous underwater vehicle depth control[C]∥Modelling,Identification&Control(IC-MIC)2012 Proceedings of International Conference on IEEE,2012:618-623.
    [5]刘和平,龚振邦,李敏,等.水下机器人浪涌中横摇角的模糊滑模控制[J].武汉理工大学学报,2009,31(14):122-133.LIU H P,GONG Z B,LI M,et al.Fuzzy sliding mode control on the rolling of underwater robot in wave[J].Journal of Wuhan University of Technology,2009,31(14):122-133.
    [6]袁晓宇.一种基于PID算法的ROV运动控制的研究[J].自动化博览,2012(7):76-79.YUAN X Y.Numeric PID arithmetic in remotely operated vehicle sailing control[J].Automation Panorama,2012(7):76-79.
    [7]刘慧婷,冯金金,张明.水下机器人操纵系统优化控制研究[J].计算机仿真,2016,33(5):299-303.LIU H T,FENG J J,ZHANG M.Researchon optimal control of underwater robot control system[J].Computer Simulation,2016,33(5):299-303.
    [8]JAVADI-MOGHADDAM J,BAGHERI A.An adaptiveneurofuzzy sliding mode based genetic algorithm control system for underwater remotely operated vehicle[J].Expert Syst,2010,37(3):647-660.
    [9]施生达.潜艇操纵性[M].北京:国防工业出版社,1995.
    [10]刘可峰,连琏,曹俊亮,等.基于模糊PID方法的ROV操纵控制仿真[J].江苏科技大学学报,2015,29(1):70-75.LIU K F,LIAN L,CAO J L,et al.Simulation on manoeuvre and control of ROV based on fuzzy PID algorithm[J].Journal of Jiangsu University of Science and Technology(Natural Science Edition),2015,29(1):70-75.
    [11]常文君,刘建成,于华南,等.水下机器人运动控制与仿真的数学模型[J].船舶工程,2002(3):58-60.CHANG W J,LIU J C,YU H N,et al.A mathematical model for motion control and simulation of underwater vehicle[J].Ship Engineering,2002(3):58-60.
    [12]冯学知,蒋强强,缪泉明,等.潜体波浪中近水面不同潜深和航向时运动和波浪力计算[J].船舶力学,2002,6(2):1-14.FENG X Z,JIANG Q Q,MIAO Q M,et al.Computation of motion and wave forces for a submarine running near free surface in different depth of immersion and direction[J].Journal of Ship Mechanics,2002,6(2):1-14.
    [13]常赛.潜艇近水面航行控制方法研究[D].哈尔滨:哈尔滨工程大学,2011.CHANG S.Research on the control ofsubmarines near the surface[D].Harbin:Harbin Engineering University,2011.
    [14]王鹢,王文武,孙枫,等.干扰力作用下潜艇近水面运动的仿真[J].系统仿真学报,2003,15(1):84-87.WANG Y,WANG W W,SUN F,et al.Simulation of submarine near-surface motion under disturbance force[J].Journal of System Simulation,2003,15(1):84-87.
    [15]刘泽发.观测型ROV航行控制系统设计及运动控制技术研究[D].杭州:浙江大学,2015.LIU Z F.Development of navigation controlsystem and research on the motion control technique of observationclass ROV[D].Hangzhou:Zhejiang University,2015.
    [16]hp_chen70.普氏风力等级表及海况等级表[EB/OL].[2018-05-21],https://wenku.baidu.com/view/39cec065ee06eff9aef8075f.html.
    [17]潘瑛,徐德民.基于Matlab的AUV近水面运动模型的建立与仿真[J].船舶工程,2003,2(5):15-18.PAN Y,XU D M.Modeling and simulation of AUV in6DOF motion near water surface by Matlab[J].Ship Engineering,2003,2(5):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700