用户名: 密码: 验证码:
臭氧浓度升高和叶面施锌对小麦籽粒产量、锌浓度及有效性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impacts of elevated ozone concentration and foliar zinc application on yield,grain zinc content and bioavailability of wheat
  • 作者:张庆 ; 贾一磊 ; 杨连新 ; 王余龙 ; 王云霞
  • 英文作者:ZHANG Qing;JIA Yi-lei;YANG Lian-xin;WANG Yu-long;WANG Yun-xia;Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops,Yangzhou University;College of Environmental Science and Engineering, Yangzhou University;
  • 关键词:小麦 ; 臭氧 ; 叶面施锌 ; 产量 ; 锌有效性
  • 英文关键词:wheat;;ozone;;foliar Zn application;;grain yield;;Zn bioavailability
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心;扬州大学环境科学与工程学院;
  • 出版日期:2019-04-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(31471437,31671618,31101101);; 江苏高校优势学科建设工程资助项目~~
  • 语种:中文;
  • 页:14-22
  • 页数:9
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X503.231
摘要
研究臭氧浓度升高和叶面施锌对小麦产量和籽粒不同组分锌营养的影响,为气候变化背景下小麦的锌生物强化提供理论依据和技术参考。利用自然光气体熏蒸平台,以富锌小麦品种青紫1号为供试材料,臭氧处理设清洁空气和臭氧浓度升高(100nL·L-1,拔节至收获),锌处理设对照(喷清水)和叶面施锌(开花期及花后1周叶面喷施0.1%Zn2+),成熟期测定小麦产量及其构成因素、籽粒各组分的锌浓度、锌含量、植酸浓度以及植酸与锌的摩尔比。叶面施锌处理对小麦籽粒产量没有影响,但臭氧浓度升高使产量平均下降66%。臭氧胁迫导致的产量损失主要与粒重明显减轻(53%)有关,其次亦与每穗粒数减少(27%)有关,而穗数没有变化。麦粒各组分锌浓度、植酸浓度以及植酸与锌摩尔比均表现为麸皮>次粉>面粉。与清洁空气相比,臭氧浓度升高使籽粒各组分的锌浓度和植酸浓度均明显增加,分别增加15%~41%和8%~45%,各组分植酸与锌摩尔比无显著变化;臭氧浓度升高使小麦面粉锌累积量占籽粒总锌的百分比显著减少。与对照相比,叶面施锌使小麦各组分锌浓度平均增加22%~24%,使植酸与锌摩尔比平均减少15%~19%,但籽粒各组分植酸浓度以及锌在各组分的分配比例均无显著影响。臭氧与锌处理对所有测定参数均无交互作用,但这两个处理与籽粒组分之间多存在不同程度的互作效应。臭氧胁迫环境下青紫1号籽粒产量和锌累积量大幅下降,籽粒各组分锌浓度显著增加,但生物有效性没有变化;花后叶面施锌对小麦产量没有影响,但使籽粒不同组分锌的营养水平均明显增加,且增幅不受臭氧浓度升高的影响。
        We studied the effects of elevated ozone concentrations and foliar zinc(Zn)applications on grain yield, Zn content, and bioavailability of the wheat grain fractions. This was done to provide a scientific basis and technical reference for Zn biofortification of wheat under climate change scenarios. The wheat cultivar Qingzi 1 was grown in glasshouse-type fumigation chambers from late elongation stage until maturity. Two chambers had low ozone concentration and acted as controls(clean air, 10 nL·L-1)and anothers two had elevated concentration of ozone and acted as stress treatments(ozone, 100 nL·L-1). Foliar spray of ZnSO4 solution(0.1% Zn2+)was applied at flowering and one week after flowering. The yield and its components, Zn concentration, Zn content, phytic acid concentration(PA)and the molar ratio of PA to Zn(PA/Zn)of grain fractions were determined at maturity. Zinc treatment had little effect on grain yield. Elevated ozone concentration reduced grain yield by 66%; these were attributed to a 27% reduction in grain per panicle and a 53% reduction in thousand-grain weight, with no change in panicle number per square meter. Zinc concentrations in three grain fractions:bran, shorts, and flour differed significantly, with the Zn concentration in flour being the lowest and that in bran being the highest. PA and the PA/Zn ratio showed the same tendency. Elevated ozone concentration increased Zn concentrations in grain fractions by 15%~41% and PA concentrations by 8%~45%,compared to clean air, which did not lead to any changes in the PA/Zn. Elevated ozone concentrations reduced the proportion of Zn accumulated in wheat flour to the total Zn content in grain. The foliar application of ZnSO4 increased Zn concentrations in grain fractions by 22%~24% and decreased the PA/Zn by 15%~19%, compared with control(water spray), but had no effect on PA or Zn distribution in the grain fractions. There was no interaction between ozone and Zn treatments for all measured parameters, but interactions between ozone treatment and grain fraction or Zn treatment and grain fraction were found for several parameters. Ozone stress decreased grain yield and Zn accumulation while increasing Zn concentrations but had no effect on Zn bioavailability of all grain fractions. Although foliar Zn application at early grain growing stage did not change grain yield, it significantly increased Zn concentration and bioavailability of the different grain fractions. However, the increases were not influenced by ozone pollution.
引文
[1] Cakmak I. Enrichment of cereal grains with zinc:Agronomic or genetic biofortification?[J] Plant Soil, 2008, 302:1-17.
    [2] Cakmak I, Kutman U B. Agronomic biofortification of cereals with zinc:A review[J]. European Journal of Soil Science, 2018, 69(1):172-180.
    [3] Caulfield L E, Black R E. In comparative quantification of health risks:Global and regional burden of disease attributable to selected major risk factors[M]//Geneva:World Health Organization, 2004.
    [4] Graham R D, Welch R M, Saunders D A, et al. Nutritious subsistence food systems[J]. Advances in Agronomy, 2007, 92:1-74.
    [5] Myers S S, Zanobetti A, Kloog I, et al. Increasing CO2 threatens human nutrition[J]. Nature, 2014, 510(7503):139-142.
    [6] Li M, Wang S X, Tian X H, et al. Zinc and iron concentrations in grain milling fractions through combined foliar applications of Zn and macronutrients[J]. Field Crops Research, 2016, 187:135-141.
    [7]王云霞,杨连新, Horst W J.重金属复合处理对小麦铜锌镍镉积累和分布的影响[J].农业环境科学学报, 2011, 30(11):2145-2151.WANG Yun-xia, YANG Lian-xin, Horst W J. The accumulation pattern of Zn, Cu, Ni, Cd in wheat grown in heavy-metal enriched substrate[J]. Journal of Agro-Environment Science, 2011, 30(11):2145-2151.
    [8]王云霞,杨连新, Horst W J.用激光剥蚀电感耦合等离子体质谱研究小麦籽粒元素的共分布[J].作物学报, 2012, 38(3):1-8.WANG Yun-xia, YANG Lian-xin, Horst W J. Element colocalization in wheat seed revealed by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)[J]. Acta Agronomica Sinica, 2012, 38(3):1-8.
    [9] Zhang Y Q, Sun Y X, Ye Y L, et al. Zinc biofortification of wheat through fertilizer applications in different locations of China[J]. Field Crops Research, 2012, 125:1-7.
    [10] Cakmak I, Kalayci M, Kaya Y, et al. Biofortification and localization of zinc in wheat grain[J]. Journal of Agricultural and Food Chemistry,2010, 58:9092-9102.
    [11]齐义涛,张庆,周三妮,等.结实期叶面施锌对扬麦16号和扬辐麦2号籽粒不同部位锌含量的影响[J].农业环境科学学报, 2013,32(4):675-680.QI Yi-tao, ZHANG Qing, ZHOU San-ni, et al. The effect of foliar Zn application at grain filling stage on Zn content in grain fractions of winter wheat Yangmai 16 and Yangfumai 2[J]. Journal of Agro-Environment Science, 2013, 32(4):675-680.
    [12]齐义涛,周三妮,张庆,等.结实期叶面施锌对小麦籽粒不同部位锌有效性的影响[J].农业环境科学学报, 2013, 32(6):1085-1091.QI Yi-tao, ZHOU San-ni, ZHANG Qing, et al. The effect of foliar Zn application at grain filling stage on Zn bioavailability in grain fractions of modern winter wheat cultivars[J]. Journal of Agro-Environment Science, 2013, 32(6):1085-1091.
    [13] Feng Z Z, Hu E Z, Wang X K, et al. Ground-level O3 pollution and its impacts on food crops in China:A review[J]. Environment Pollution,2015, 199:42-48.
    [14] IPCC Intergovernment Panel on Climate Change. Fifth assessment report[EB/OL]. http://www. ipcc. ch/report/ar5/index. shtml
    [15]列淦文,叶龙华,薛立.臭氧胁迫对植物主要生理功能的影响[J].生态学报, 2014, 34(2):294-306.LIE Gan-wen, YE Long-hua, XUE Li. Effects of ozone stress on major plant physiological functions[J]. Acta Ecologica Sinica, 2014, 34(2):294-306.
    [16]杨连新,王余龙,石广跃,等.近地层臭氧浓度对水稻生长发育影响研究进展[J].应用生态学报, 2008, 19(4):901-910.YANG Lian-xin, WANG Yu-long, SHI Guang-yao, et al. Response of rice growth and development to elevated near-surface layer ozone(O3)concentration:A review[J]. Chinese Journal of Applied Ecology,2008, 19(4):901-910.
    [17] Feng Z Z, Kobayashi K, Ainsworth E A. Impact of elevated ozone concentration on growth, physiology, and yield of wheat:A meta-analysis[J]. Global Change Biology, 2008, 14:2696–2708.
    [18] Zhu X K, Feng Z Z, Sun T F, et al. Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions[J]. Global Change Biology, 2011, 17:2697-2706.
    [19] Broberg M C, Feng Z Z, Xin Y, et al. Ozone effects on wheat grain quality:A summary[J]. Environmental Pollution, 2015, 197:203-213.
    [20] Pleijel H. Effect of ozone on zinc and cadmium accumulation in wheat-does-response functions and relationship with protein, grain yield, and harvest index[J]. Ecology and Evolution, 2012, 2(12):3186-3194.
    [21] Pleijel H, Danielsson H. Yield dilution of grain Zn in wheat grown in open-top chamber experiments with elevated CO2 and O3 exposure[J].Journal of Cereal Science, 2009, 50:278-282.
    [22] Zheng F X, Wang X K, Zhang W W, et al. Effects of elevated O3 exposure on nutrient elements and quality of winter wheat and rice grain in Yangtze River Delta, China[J]. Environmental Pollution, 2013, 179:19-26.
    [23]景立权,户少武,穆海蓉,等.大气环境变化导致水稻品质总体变劣[J].中国农业科学, 2018, 51(13):2462-2475.JING Li-quan, HU Shao-wu, MU Hai-rong, et al. Change of atmospheric environment leads to deterioration of rice quality[J]. Scientia Agricultura Sinica, 2018, 51(13):2462-2475.
    [24] Wang Y X, Yang L X, Han Y, et al. The impact of elevated tropospheric ozone on grain quality of hybrid rice:A free-air gas concentration enrichment(FACE)experiment[J]. Field Crops Research, 2012,129(1):81-89.
    [25] Wang Y X, Frei M. Stressed food-The impact of abiotic environment stress on crop quality[J]. Agriculture, Ecosystems and Environment,2011, 141:271-286.
    [26] Eichert T, Burkhardt J, Goldbach H E. Some factors controlling stomatal uptake[J]. Acta Horticulturae, 2002, 594:85-90.
    [27] Eichert T, Goldbach H E. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—further evidence for a stomatal pathway[J]. Physiologia Plantarum, 2008, 132:491-502.
    [28] Schlegel T K, Sch?nherr J, Schreiber L. Rates of foliar penetration of chelated Fe(Ⅲ):role of light, stomata, species, and leaf age[J]. Journal of Agricultural and Food Chemistry, 2006, 54(18):6809-6813.
    [29]张明艳,郁一凡,封超年,等.不同基因型小麦籽粒、面粉和麸皮中Ca和Zn含量的差异[J].麦类作物学报, 2011, 31(2):240-245.ZHANG Ming-yan, YU Yi-fan, FENG Chao-nian, et al. Differences of calcium and zinc contents among flour, grain and bran of different wheat varieties[J]. Journal of Triticeae Crops, 2011, 31(2):240-245.
    [30]赵轶鹏,邵在胜,宋琪玲,等.一种新型自然光气体熏蒸平台:系统结构与控制精度[J].农业环境科学学报, 2012, 31(11):2082-2093.ZHAO Yi-peng, SHAO Zai-sheng, SONG Qi-ling, et al. System structure and control accuracy of a solar-illuminated gas fumigation platform[J]. Journal of Agro-Environment Science, 2012, 31(11):2082-2093.
    [31] Wang Y X, Song Q L, Frei M, et al. Effects of elevated ozone, carbon dioxide, and the combination of both on the grain quality of Chinese hybrid rice[J]. Environmental Pollution, 2014, 189(12):9-17.
    [32]邵在胜,穆海蓉,赵轶鹏,等.臭氧胁迫对不同敏感型水稻物质积累与分配的影响[J].中国水稻科学, 2018, 32(2):181-188.SHAO Zai-sheng, MU Hai-rong, ZHAO Yi-peng, et al. Impacts of ozone stress on dry matter accumulation and distribution of rice genotypes with different ozone sensitivity[J]. Chinese Journal of Rice Science, 2018, 32(2):181-188.
    [33] Lapteva N A. Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing[J]. Analytical Biochemistry, 1988, 175:227-230.
    [34] Feng Z, Kobayashi K. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis[J]. Atmospheric Environment, 2009, 43:1510-1519.
    [35]杨习文,田霄鸿,陆欣春,等.喷施锌肥对小麦籽粒锌铁铜锰营养的影响[J].干旱地区农业研究, 2010, 28(6):95-102.YANG Xi-wen, TIAN Xiao-hong, LU Xin-chun, et al. Effect of foliar zinc application on the micronutrients of wheat grain[J]. Agricultural Research in the Arid Areas, 2010, 28(6):95-102.
    [36]李宏云,王少霞,李萌,等.不同水氮管理下锌与氮磷肥配合喷施对冬小麦锌营养品质的影响[J].中国农业科学, 2014, 47(20):4016-4026.LI Hong-yun, WANG Shao-xia, LI Meng, et al. Effects of combined foliar Zn application with N or P under different water and nitrogen managements on Zn nutritional quality of winter wheat[J]. Scientia Agricultura Sinica, 2014, 47(20):4016-4026.
    [37]张庆,王娟,景立权,等.叶面施用不同形态锌化合物对稻米锌浓度及有效性的影响[J].中国水稻科学, 2015, 29(6):610-618.ZHANG Qing, WANG Juan, JING Li-quan, et al. Effect of foliar application of different Zn compounds on Zn concentration and bioavailability in brown rice[J]. Chinese Journal of Rice Science, 2015, 29(6):610-618.
    [38] Lonnerdal B. Dietary factors influencing zinc absorption[J]. The Journal of Nutrition, 2000, 130(Suppl 5):1378-1383.
    [39] Morris E R, Ellis R. Usefulness of the dietary phytic acid/zinc molar ratio as an index of zinc bioavailabi1ity to rats and humans[J]. Biological Trace Element Research, 1989, 19:107-117.
    [40]王云霞,杨连新, Horst W J.激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)定量分析小麦籽粒锌元素的空间分布[J].南京农业大学学报, 2011, 34(2):18-22.WANG Yun-xia, YANG Lian-xin, Horst W J. Quantification and spatial distribution of zinc in wheat grains by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)[J]. Journal of Nanjing Agricultural University, 2011, 34(2):18-22.
    [41] Wang Y X, Specht A, Horst W J. Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat[J].New Phytologist, 2011, 189:428–437.
    [42]郭九信,廖文强,凌宁,等.氮锌配施对小麦产量及氮锌含量的影响[J].南京农业大学学报, 2013, 36(2):77-82.GUO Jiu-xin, LIAO Wen-qiang, LING Ning, et al. Effects of combination use of N and Zn fertilizers on the yield and N, Zn concentrations in wheat[J]. Journal of Nanjing Agricultural University, 2013, 36(2):77-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700