用户名: 密码: 验证码:
基于SWAT和CLUE-S模型的不同土地利用方式对排涝模数的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Using SWAT and CLUE-S Models to Evaluate the Effect of Land Use on Drainage Modules
  • 作者:李娜 ; 王修贵 ; 罗强 ; 王述海 ; 柯志刚
  • 英文作者:LI Na;WANG Xiugui;LUO Qiang;WANG Shuhai;KE Zhigang;National Key Laboratory of Water Resources and Hydropower Engineering Science of Wuhan University;Jiangxi Agricultural University;Jingzhou Water Conservancy Bureau;
  • 关键词:SWAT模型 ; CLUE-S模型 ; 排涝模数 ; 土地利用方式
  • 英文关键词:SWAT model;;CLUE-S model;;drainage modulus;;land use
  • 中文刊名:灌溉排水学报
  • 英文刊名:Journal of Irrigation and Drainage
  • 机构:武汉大学水资源与水电工程科学国家重点实验室;江西农业大学;荆州市水利局;
  • 出版日期:2019-02-15
  • 出版单位:灌溉排水学报
  • 年:2019
  • 期:02
  • 基金:国家重点研发计划课题项目(2018YFC1508301);; 国家自然科学基金项目(51379153,50979074)
  • 语种:中文;
  • 页:78-85
  • 页数:8
  • CN:41-1337/S
  • ISSN:1672-3317
  • 分类号:TU992;F301.24
摘要
【目的】研究土地利用方式变化对排涝模数的影响,优化区域排涝管理。【方法】选取湖北四湖流域螺山排区为研究区域,将流域水文模型SWAT和土地利用变化模型CLUE-S联合应用,设置了6种水旱比、5种水面率及5种城市化率的单因素变化(即其他2个因素不发生变化)条件下不同土地利用情景,应用CLUE-S模型模拟生成各情景下的土地利用空间分布图,建立了SWAT模型模拟不同土地利用情景的降雨径流过程,分析了不同土地利用方式对排涝模数的影响。【结果】在相同的设计暴雨、其他因素维持现状条件下:当水旱比由0增加到1时,排涝模数减小了0.117 m~3/(s·km~2);当水面率由0增加到20%时,排涝模数减小了0.111 m~3/(s·km~2);当城市化率由0增加到10%时,排涝模数增加了0.104 m~3/(s·km~2)。排涝模数随着水旱比和水面率的增大均呈减小趋势,随着城市化率的增大呈增大趋势。在相同设计暴雨、其他因素维持现状条件下:当水旱比由0增加到0.2时,排涝模数只减小了3.06%;当水面率由0增加到10%时,排涝模数减小了14.03%;当城市化率由0增大到10%时,排涝模数增大了16.67%。3种引起土地利用方式变化的因素中,排涝模数对水面率和城市化率变化的敏感程度相当,对二者的敏感程度明显大于水旱比。【结论】在未来区域规划中,可以通过增大水旱比、增大水面面积和限制城市扩张来减轻排涝压力,其中适当增大水面面积和限制城市扩张更加有效。
        【Objective】Change in land use could alert water movement in a catchment and this paper studies its impact on drainage modules using the SWAT and CLUE-S models in order to optimize catchment management.【Method】The study focused on Luoshan drainage area in the Four-lake Watershed in Hubei province. The watershed hydrologic model SWAT was combined with the land use change model CLUE-S to analyze the effect of different land uses on drainage modules in this area. We considered six ratios of paddy-field area to dryland area,five water surface ratios and five urbanization ratios, and studied how the drainage modules respond to change in one single factor by keeping other factors unchanged. We used the CLUE-S model to simulate the land use variation under each scenario, and the SWAT model to simulate the associated runoff and the effect of land use on drainage modules.【Result】Under the same rainstorm with other factors remaining the same, when the ratio of paddy field area to dryland area increased from 0 to 1 the drainage modulus decreased by 0.117 m~3/(s · km~2), while when the water surface ratio increased from 0 to 20% the drainage modulus decreased by 0.111 m~3/(s · km~2). Increasing the urbanization ratio from 0 to 10% reduced the drainage modulus by 0.104 m~3/(s · km~2). The drainage modulus decreased as the ratio of paddy field area to dryland area or water surface ratio increased, but increased with urbanization ratio. Under the same rainstorm with other factors remaining the same as they are, ① increasing the ratio of paddy field area to dryland area from 0 to 0.2 decreased the drainage modulus by 3.06%; ② increasing the water surface ratio from 0 to 10% decreased the drainage modulus by 14.03%; ③ increasing the urbanization ratio from 0 to 10% increased the drainage modulus by 16.67%. Among all three land use changes, the drainage module is more sensitive to change in water surface ratio and urbanization ratio.【Conclusion】The drainage pressure could be alleviated by increasing paddy field area or water surface area or limiting urban expansion,with increasing water surface area and limiting urban expansion being more effective.
引文
[1]许迪.平原地区明渠排涝流量的两种计算方法[J].水利水电技术, 1994(11):52-55.
    [2]王燕.安徽省沿江圩区农田排涝模计算[J].水利经济, 2000(4):40-45.
    [3]王国安,贺顺德,崔鹏,等.排涝模数法的基本原理和适用条件[J].人民黄河, 2011, 33(2):21-24, 26.
    [4]郑雄伟,周芬,侯云青,等.城镇圩区排涝模数与合理水面率研究[J].水利水电技术, 2012, 43(9):90-94.
    [5]张建新,惠士博,谢森传.利用降雨入渗产流分析原理和Nash单位线汇流方法进行排涝模数计算的研究[J].水文, 2002(3):1-4, 21.
    [6]王国安,贺顺德,李荣容,等.论推理公式的基本原理和适用条件[J].人民黄河, 2010, 32(12):1-4.
    [7] ARNOLD J G, WILLIAMS J R, MAIDMENT D R. Continuous-time water and sediment-routing model for large basins[J].Journal of Hydraulic Engineering, 1995, 121(2):171-183.
    [8]吕乐婷,彭秋志,郭媛媛,等.基于SWAT模型的东江流域径流模拟[J].自然资源学报,2014,29(10):1 746-1 757.
    [9]王苗,刘敏,夏智宏.基于SWAT模型的洪湖流域供水资源模拟研究[J].气象科学, 2014,34(5):515-521.
    [10]吴迪,崔远来.塘堰调控对未来气候变化下典型灌区氮负荷排放的影响[J].灌溉排水学报, 2017, 36(2):20-24.
    [11]宋兰兰,郝庆庆,王文海.基于SWAT模型的复新河流域非点源污染研究[J].灌溉排水学报, 2018, 37(4):94-98.
    [12]王修贵,张华彬,罗文兵,等.湖北四湖流域涝渍地综合利用与治理对排涝模数的影响[J].华北水利水电大学学报(自然科学版),2015,36(4):1-7.
    [13]桑学锋,周祖昊,秦大庸,等.改进的SWAT模型在强人类活动地区的应用[J].水利学报,2008,39(12):1 377-1 383, 1 389.
    [14]罗运祥,苏保林,张倩,等.基于SWAT的平原圩区受控水文过程识别和模拟[J].资源科学,2013,35(3):594-600.
    [15]李硕,赖正清,王桥,等.基于SWAT模型的平原河网区水文过程分布式模拟[J].农业工程学报,2013,29(6):106-112.
    [16]任梅芳.基于CLUE-S模型的南宁市土地利用景观格局时空动态变化模拟研究[D].南宁:广西师范学院,2012.
    [17] ZHANG Liping, ZHANG Shiwen, ZHOU Zhiming, et al. Spatial distribution prediction and benefits assessment of green manure in the Pinggu District,Beijing,based on the CLUE-S model[J].农业科学学报(英文版),2016(2):465-474.
    [18]戴声佩,张勃.基于CLUE-S模型的黑河中游土地利用情景模拟研究:以张掖市甘州区为例[J].自然资源学报,2013,28(2):336-348.
    [19] LIU Junhong, GONG Jun, CHEN Jianhong. Spatial pattern simulation on land use change in Nanchang based on CLUE-S model[J]. Mechanics and Materials,2013(295/298):2 523-2 527.
    [20]冯仕超,高小红,顾娟,等.基于CLUE-S模型的湟水流域土地利用空间分布模拟[J].生态学报,2013,33(3):985-997.
    [21] LIU Miao, LI Chunlin, HU Yuanman, et al. Combining CLUE-S and SWAT Models to forecast land use change and non-point source pollution impact at a watershed scale in Liaoning province, China[J].中国地理科学(英文版),2014(5):540-550.
    [22] ZHANG Ping, LIU Yunhui, PAN Ying. Land use pattern optimization based on CLUE-S and SWAT models for agricultural non-point source pollution control[J]. Mathematial and Computer Modelling,2013(58):588-595.
    [23]孙丽娜,卢文喜,杨青春,等.东辽河流域土地利用变化对非点源污染的影响研究[J].中国环境科学,2013,33(8):1 459-1 467.
    [24]张凌,南卓铜,余文君.基于模型耦合的土地利用变化和水文响应多情景分析[J].地球信息科学学报,2013,15(6):829-839.
    [25]韩洁春.罗玉沟流域土地利用变化的水文响应研究[D].北京:北京林业大学,2011.
    [26] PONTIUS R G, SCHNEIDER L C. Land-cover change model validation by an ROC method for the Ipswich watershed[J]. Agriculture, Ecosystems and Environment, 2001(85):239-248.
    [27]丁庆龙.基于CLUE-S模型土地利用变化情景模拟研究[D].河北:河北农业大学,2014.
    [28] JOCOB Cohen. A Coefficient of Agreement for Nominal Scales[J]. Educational and Psychological Measurement, 1960(1):37-46.
    [29]布仁仓,常禹,胡远满,等.基于Kappa系数的景观变化测度:以辽宁省中部城市群为例[J].生态学报, 2005,25(4):778-784, 945.
    [30]刘淼,胡远满,常禹,等.土地利用模型时间尺度预测能力分析:以CLUE-S模型为例[J].生态学报,2009,29(11):6 110-6 119.
    [31]陈军锋,陈秀万. SWAT模型的水量平衡及其在梭磨河流域的应用[J].北京大学学报(自然科学版),2004(2):265-270.
    [32]王学.基于SWAT模型的白马河流域土地利用/覆被变化的水文效应研究[D].山东:山东师范大学,2012.
    [33]项瑛,张余庆,程婷.基于SWAT模型的里下河平原区水文模拟[J].资源科学,2015,37(6):1 181-1 189.
    [34]冯宝平,梁行,曾灼.基于SWAT模型的济南南部山区土地利用优化研究[J].灌溉排水学报, 2018, 37(5):121-128.
    [35]罗文兵,王修贵,罗强,等.四湖流域下垫面改变对排涝模数的影响[J].水科学进展, 2014, 25(2):275-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700