用户名: 密码: 验证码:
黄河尾闾河道及河口区水体与悬浮颗粒物重金属和砷沿程分布及生态风险
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution and ecological risk assessment of heavy metals and arsenic in the water and suspended particulate matter of the tail-reaches and estuary of the Yellow River
  • 作者:黎静 ; 孙志高 ; 田莉萍 ; 陈冰冰
  • 英文作者:LI Jing;SUN Zhigao;TIAN Liping;CHEN Bingbing;Key Laboratory of Humid Subtropical Eco-geographical Process(Fujian Normal University),Ministry of Education;Institute of Geography,Fujian Normal University;Fujian Provincial Key Laboratory for Subtropical Resources and Environment,Fujian Normal University;
  • 关键词:重金属 ; ; 生态风险 ; 尾闾河道 ; 河口区
  • 英文关键词:heavy metals;;arsenic;;ecological risk;;tail-reaches;;estuary area
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建师范大学湿润亚热带生态地理过程教育部重点实验室;福建师范大学地理研究所;福建师范大学福建省亚热带资源与环境重点实验室;
  • 出版日期:2019-05-16 16:43
  • 出版单位:生态学报
  • 年:2019
  • 期:15
  • 基金:国家自然科学基金面上项目(41371104);; 福建省“闽江学者奖励计划”项目
  • 语种:中文;
  • 页:120-133
  • 页数:14
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:X52
摘要
基于2016年汛前和汛后获取的黄河尾闾河道与河口区(低盐区)表层和底层水体和悬浮颗粒物样品,研究了水体和悬浮颗粒物中重金属(Cr、Ni、Cu、Zn、Pb、Cd)和As含量的沿程分布特征,并评估了其生态风险。结果表明,汛前尾闾河道表层水体中仅Cd的平均含量高于河口区,而底层水体中As、Cr、Cu、Ni和Pb的平均含量均高于河口区;汛后尾闾河道表层水体中仅Ni的平均含量低于河口区,而底层水体中6种重金属和As的平均含量均高于河口区。汛前尾闾河道表层悬浮颗粒物中As、Cd、Cu、Ni、Pb和Zn的平均含量均低于河口区,而底层悬浮颗粒物中6种重金属和As的平均含量均低于河口区;汛后尾闾河道表层悬浮颗粒物中6种重金属和As的平均含量均高于河口区,而底层悬浮颗粒物中As、Cd、Cr、Cu和Pb的平均含量均高于河口区。汛前和汛后尾闾河道及河口区表层和底层水体中重金属和As污染较轻,其值大多分别低于地表水环境质量Ⅰ类标准和海水水质Ⅰ类标准限值。相对于汛前,汛后尾闾河道及河口区表层或底层悬浮颗粒物中As和6种重金属的毒性单位之和(∑TUs)和平均PEL商数值均降低,说明汛期调水调沙工程的实施可降低汛后悬浮颗粒物中上述元素综合作用所产生潜在生态毒性风险。
        The concentrations of heavy metals(Cr, Ni, Cu, Zn, Pb, Cd) and arsenic(As) in the water and suspended particulate matter(SPM) of different layers of the tail reaches of the river and estuary(low-salinity area) of the Yellow River were sampled in the pre-flood(April) and post-flood(October) seasons of 2016 to investigate their distributions in a seaward direction. The ecological risk of heavy metals and As in the water and SPM of different depth layers were evaluated. The results showed that in the pre-flood season, only the mean level of Cd in the surface layer was higher in the tail reaches than in the low-salinity area, whereas the average concentrations of As, Cr, Cu, Ni, and Pb in the bottom layer water were higher in the tail reaches than in the low-salinity area. In the post-flood season, the average level of Ni in the surface water layer was lower in the tail reaches than in the low-salinity area, while the average concentrations of the six heavy metals and As in the bottom layer were higher than those in the low-salinity area. Moreover, in the pre-flood season, the average concentrations of As, Cd, Cu, Ni, Pb, and Zn in SPM in the surface layer were lower in the tail reaches than in the low-salinity area and the average levels of six heavy metals and As in SPM in the bottom layer of tail reaches were all lower than those in low-salinity areas. In the post-flood season, the average concentrations of six heavy metals and As in SPM of the surface layer of tail reaches were higher than those in low-salinity areas; the average levels of As, Cd, Cr, Cu, and Pb in SPM of the bottom layer were higher in tail reaches than in low-salinity areas. As and metal pollution in the water of surface and bottom layers of tail reaches and low-salinity areas was not serious, and was generally in accordance with the Class I Criteria of Environmental Quality of Surface Water in China and the Class I Criteria of Seawater Quality in China, respectively. Compared with the pre-flood season, the sum of toxic units(ΣTUs) and the mean probable effects level(PEL) quotient of As and metals in the SPM of the surface and/or bottom layers of tail reaches and low-salinity areas decreased greatly in the post-flood season, indicating that the implementation of a Flow-Sediment Regulation Scheme during the flooding season could reduce the potential ecological toxicity risk caused by the combined effects of these elements in suspended particles.
引文
[1] Zhan S F,Peng S T,Liu C G,Chang Q,Xu J.Spatial and temporal variations of heavy metals in surface sediments in Bohai Bay,North China.Bulletin of Environmental Contamination and Toxicology,2010,84(4):482- 487.
    [2] 王辉,孙丽娜,刘哲,罗庆,吴昊,王晓旭.浑河水环境健康风险特征研究.生态毒理学报,2015,10(2):394- 402.
    [3] Li S Y,Zhang Q F.Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River,China.Journal of Hazardous Materials,2010,181(1/3):1051- 1058.
    [4] 水利部黄河水利委员会.2015年黄河水资源公报,2015
    [5] Chen J S,Tao Y,Ongley E.Influence of high levels of total suspended solids on measurement of cod and bod in the Yellow River,China.Environmental Monitoring and Assessment,2006,116(1/3):321- 334.
    [6] Liu J G,Li K,Liu H,Feng M M.Biochemical characteristics of UBAF in different influent NH+4-N concentration under Yellow River Condition.Advanced Materials Research,2012,374- 377:991- 994.
    [7] Liu C B,Jian X,Liu C G,Zhang P,Dai M X.Heavy metals in the surface sediments in Lanzhou Reach of Yellow River,China.Bulletin of Environmental Contamination and Toxicology,2009,82(1):26- 30.
    [8] 梁琼,王玉霞,倪霞,刘小云,崔琴.甘肃土壤重金属元素含量及潜在生态危害评价.国外医学(医学地理分册),2017,38(04):336- 338.
    [9] 何江,王新伟,李朝生,孙卫国.黄河包头段水-沉积物系统中重金属的污染特征.环境科学学报,2003,23(1):53- 57.
    [10] 樊庆云.黄河包头段沉积物重金属的生物有效性研究[D].呼和浩特:内蒙古大学,2008.
    [11] 郭兴森.黄河尾闾河道及河口碳氮输运及其对碳释放的影响[D].青岛:青岛大学,2015.
    [12] 李光耀,金军,何畅,王英,马召辉,李明园.黄河表层沉积物中类二(口恶)英多氯联苯水平分布.环境科学,2014,35(09):3358- 3364.
    [13] Yuan Z J,Liu G J,Lam M H W,Liu H Q,Da C N.Occurrence and levels of polybrominated diphenyl ethers in surface sediments from the Yellow River Estuary,China.Environmental Pollution,2016,212:147- 154.
    [14] 田莉萍,孙志高,王传远,孙万龙,黎静,陈冰冰.调水调沙工程黄河口近岸沉积物重金属和砷含量的空间分布及其生态风险评估.生态学报,2018,38(15):5529- 5540.
    [15] 汤爱坤.调水调沙前后黄河口重金属的变化及其影响因素[D].青岛:中国海洋大学,2011.
    [16] 刘志媛.黄河口碳的输运特征及通量[D].青岛:中国海洋大学,2014.
    [17] 王伟,衣华鹏,孙志高,王苗苗,卢晓宁.调水调沙工程实施10年来黄河尾闾河道及近岸水下岸坡变化特征.干旱区资源与环境,2015,29(10):86- 92.
    [18] Pedersen F,Bj?rnestad E,Andersen H V,Kj?lholt J,Poll C.Characterization of sediments from Copenhagen Harbour by use of biotests.Water Science and Technology,1998,37(6/7):233- 240.
    [19] Macdonald D D,Ingersoll C G,Berger T A.Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems.Archives of Environmental Contamination and Toxicology,2000,39(1):20- 31.
    [20] Macdonald D D,Carr R S,Calder F D,Long E R,Ingersoll C G.Development and evaluation of sediment quality guidelines for Florida coastal waters.Ecotoxicology,1996,5(4):253- 278.
    [21] Carr S R,Chapman D C,Long E R,Windom H L,Thursby G,Sloane G M,Wolfe D A.Sediment quality assessment studies of Tampa bay,Florida.Environmental Toxicology and Chemistry,2010,15(7):1218- 1231.
    [22] Long E R,Macdonald D D,Severn C G,Hong C B.Classifying probabilities of acute toxicity in marine sediments with empirically derived sediment quality guidelines.Environmental Toxicology and Chemistry,2010,19(10):2598- 2601.
    [23] Sun Z G,Mou X J,Tong C,Wang C Y,Xie Z L,Song H G,Sun W G,Lv Y C.Spatial variations and bioaccumulation of heavy metals in intertidal zone of the Yellow River estuary,China.Catena,2015,126:43- 52.
    [24] Turner A.Trace-metal partitioning in estuaries:importance of salinity and particle concentration.Marine Chemistry,1996,54(1/2):27- 39.
    [25] 贺跃,胡艳华,王秋潇,谢淑云.大冶大港河水系沉积物中重金属来源分析.地球化学,2011,40(3):258- 265.
    [26] 吴斌,宋金明,李学刚.黄河口表层沉积物中重金属的环境地球化学特征.环境科学,2013,34(4):1324- 1332.
    [27] 吴晓燕,刘汝海,秦洁,孙培艳,高振会,贾永刚.黄河口沉积物重金属含量变化特征研究.海洋湖沼通报,2007,(S1):69- 74.
    [28] 王晓蓉,章慧珠,周爱和,刘育民,许鸥泳,赵大为.金沙江颗粒物对重金属的吸附.环境化学,1983,2(1):23- 32.
    [29] 张雁生,侯诗宝,杜晶晶,章敏,卜辉阳,钟涛.河流沉积物重金属研究进展.云南农业大学学报,2009,24(4):630- 633.
    [30] 杜俊涛.黄河下游及黄河口湿地磷的生物地球化学研究[D].青岛:中国海洋大学,2011.
    [31] 周凤霞.从海岸带到深海部分化学参数的环境特征与指示意义[D].烟台:中国科学院烟台海岸带研究所,2016.
    [32] 张晓晓.黄河下游水体及河口湿地沉积物中重金属的变化特征研究[D].青岛:中国海洋大学,2010.
    [33] 萨拉门斯W,福斯特恩U.金属的水文循环.傅天保,译.北京:海洋出版社,1992.
    [34] 吴晓燕.黄河入海过程中重金属的变化特征研究[D].青岛:中国海洋大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700