用户名: 密码: 验证码:
易分解有机碳对不同恢复年限森林土壤激发效应的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of labile organic carbon input on the priming effect along an ecological restoration gradient
  • 作者:丘清燕 ; 姚快乐 ; 刘骏 ; 葛志强 ; 许文斌 ; 刘红晓 ; 胡亚林
  • 英文作者:QIU Qingyan;YAO Kuaile;LIU Jun;GE Zhiqiang;XU Wenbin;LIU Hongxiao;HU Yalin;Forest Ecology Stable Isotope Center, College of Forestry, Fujian Agriculture and Forestry University;Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences;
  • 关键词:易分解有机碳 ; 激发效应 ; 土壤氮素可利用性 ; 生态恢复 ; 林龄
  • 英文关键词:labile organic carbon;;priming effect;;soil N availability;;ecological restoration;;stand age
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建农林大学林学院森林生态稳定同位素研究中心;中国科学院华南植物园中国科学院退化生态系统植被恢复与管理重点实验室;
  • 出版日期:2019-04-17 09:50
  • 出版单位:生态学报
  • 年:2019
  • 期:13
  • 基金:福建省教育厅中青年教师教育科研项目(JAT170188);; 福建省科技厅自然科学基金项目(2018J05047);; 国家自然科学基金项目(41703066);; 中国科学院退化生态系统植被恢复与管理重点实验室开放基金资助项目(Y821161001-DE2018025)
  • 语种:中文;
  • 页:266-275
  • 页数:10
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S714
摘要
土壤有机碳库作为陆地生态系统最大的碳库,其微小的改变都将引起大气CO_2浓度的急剧改变。易分解有机碳的输入可以通过正/负激发效应加快/减缓土壤有机碳(SOC)的矿化,并最终影响土壤碳平衡。以长汀县不同恢复年限森林(裸地、5年、15年、30年马尾松林以及天然林)土壤为研究对象,通过室内培养向土壤中添加~(13)C标记葡萄糖研究易分解有机碳输入对不同恢复阶段森林土壤激发效应的影响。研究结果表明,易分解有机碳输入引起的土壤激发效应的方向和强度因不同恢复阶段而异。易分解有机碳输入的初期对各恢复阶段森林土壤均产生正的激发效应,然而随着时间的推移,15年、30年马尾松林以及天然林相继出现负的激发效应。从整个培养期(59 d)来看,易分解有机碳的输入促进了裸地与5年生马尾松林土壤有机碳的矿化,有机碳的矿化量分别提高了131%±27%与25%±5%;但是减缓了15年生马尾松林土壤有机碳的矿化,使其矿化量减少了10%±1%;然而,易分解有机碳输入对30年生马尾松林及天然林土壤有机碳的矿化则无明显影响。土壤累积激发碳量与葡萄糖添加前后土壤氮素的改变百分比呈显著正相关关系(R~2=0.44,P<0.05),表明易分解有机碳输入诱导的土壤激发效应受土壤氮素可利用性的调控,土壤微生物需要通过分解原有土壤有机碳释放的氮素来满足自身的需求。
        The soil organic carbon(SOC) pool is the largest carbon pool in terrestrial ecosystems, and a small change in the pool will result in a great change in atmospheric CO_2 concentration. The input of labile organic carbon will accelerate or mitigate the mineralization of SOC through a positive or negative priming effect and eventually affect soil carbon balance. In the present study, we sampled forest soils at different restoration years from Changting County, Fujian Province, and added ~(13)C-labeled glucose to those soils to investigate the impact of labile organic carbon input on the priming effect. The results showed that the direction and magnitude of the priming effect induced by the input of labile organic carbon were dependent on the restoration age. A positive priming effect was observed immediately after the application of labile organic carbon. However, a shift from positive priming effect to negative effect occurred in the 15-and 30-year-old Pinus massoniana forests as well as natural forest with time. Throughout the experiment(59 days), the input of labile organic carbon accelerated the mineralization of SOC in the bare soil and 5-year-old Pinus massoniana forest. The amount of SOC-derived CO_2 emissions increased by about 131% ± 27% and 25% ± 5%, respectively. However, the input of labile organic carbon declined by about 10% ± 1% of SOC mineralization in the 15-year-old Pinus massoniana forest, and it had no significant effects on SOC mineralization in the 30-year-old Pinus massoniana forest and natural forest. The cumulative priming effect was positive correlated with the cumulative percent change in soil available N due to glucose addition during the 59 days of incubation. This indicates that the priming effect induced by the labile organic carbon input is governed by soil N availability, and microbes increased SOC mineralization to meet the N requirement.
引文
[1] Lal R.Soil carbon sequestration to mitigate climate change.Geoderma,2004,123(1/2):1- 22.
    [2] Kuzyakov Y,Friedel J K,Stahr K.Review of mechanisms and quantification of priming effects.Soil Biology and Biochemistry,2000,32(11/12):1485- 1498.
    [3] Chen R R,Senbayram M,Blagodatsky S,Myachina O,Dittert K,Lin X G,Blagodatskaya E,Kuzyakov Y.Soil C and N availability determine the priming effect:microbial N mining and stoichiometric decomposition theories.Global Change Biology,2014,20(7):2356- 2367.
    [4] Guenet B,Neill C,Bardoux G,Abbadie L.Is there a linear relationship between priming effect intensity and the amount of organic matter input?Applied Soil Ecology,2010,46(3):436- 442.
    [5] Kuzyakov Y.Review:factors affecting rhizosphere priming effects.Journal of Plant Nutrition and Soil Science,2002,165(4):382- 396.
    [6] Dalenberg J W,Jager G.Priming effect of some organic additions to 14C-labelled soil.Soil Biology and Biochemistry,1989,21(3):443- 448.
    [7] Blagodatskaya E,Kuzyakov Y.Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:critical review.Biology and Fertility of Soils,2008,45(2):115- 131.
    [8] Fontaine S,Bardoux G,Abbadie L,Mariotti A.Carbon input to soil may decrease soil carbon content.Ecology Letters,2004,7(4):314- 320.
    [9] Wang H,Xu W H,Hu G Q,Dai W W,Jiang P,Bai E.The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest.Oecologia,2015,178(4):1239- 1250.
    [10] Fontaine S,Henault C,Aamor A,Bdioui N,Bloor J M G,Maire V,Mary B,Revaillot S,Maron P A.Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect.Soil Biology and Biochemistry,2011,43(1):86- 96.
    [11] Wang Q K,Wang S L,He T X,Liu L,Wu J B.Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils.Soil Biology and Biochemistry,2014,71:13- 20.
    [12] Sullivan B W,Hart S C.Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient.Soil Biology and Biochemistry,2013,58:293- 301.
    [13] Bradford M A,Fierer N,Reynolds J F.Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon,nitrogen and phosphorus inputs to soils.Functional Ecology,2008,22(6):964- 974.
    [14] 徐涵秋,何慧,黄绍霖.福建省长汀县河田水土流失区植被覆盖度变化及其热环境效应.生态学报,2013,33(10):2954- 2963.
    [15] 杨冉冉,徐涵秋,林娜,何慧,曾宏达.基于RUSLE的福建省长汀县河田盆地区土壤侵蚀定量研究.生态学报,2013,33(10):2974- 2982.
    [16] 刘翥,杨玉盛,司友涛,康根丽,郑怀舟.植被恢复对侵蚀红壤可溶性有机质含量及光谱学特征的影响.植物生态学报,2014,38(11):1174- 1183.
    [17] 张秋芳,陈奶寿,陈坦,吕茂奎,杨玉盛,谢锦升.不同恢复年限侵蚀红壤生态化学计量特征.中国水土保持科学,2016,14(2):59- 66.
    [18] Vance E D,Brookes P C,Jenkinson D S.An extraction method for measuring soil microbial biomass C.Soil Biology and Biochemistry,1987,19(6):703- 707.
    [19] Kukum?gi M,Ostonen I,Uri V,Helmisaari H S,Kanal A,Kull O,L?hmus K.Variation of soil respiration and its components in hemiboreal Norway spruce stands of different ages.Plant and Soil,2017,414(1/2):265- 280.
    [20] Wang C K,Bond-Lamberty B,Gower S T.Soil surface CO2 flux in a boreal black spruce fire chronosequence.Journal of Geophysical Research:Atmospheres,2002,108(D3):8224.
    [21] Saiz G,Byrne K A,Butterbach-Bahl K,Kiese R,Blujdea V,Farrell E P.Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland.Global Change Biology,2006,12(6):1007- 1020.
    [22] Tang J W,Bolstad P V,Martin J G.Soil carbon fluxes and stocks in a Great Lakes forest chronosequence.Global Change Biology,2009,15(1):145- 155.
    [23] Guelland K,Esperschütz J,Bornhauser D,Bernasconi S M,Kretzschmar R,Hagedorn F.Mineralisation and leaching of C from 13C labelled plant litter along an initial soil chronosequence of a glacier forefield.Soil Biology and Biochemistry,2013,57:237- 247.
    [24] Blagodatskaya E,Khomyakov N,Myachina O,Bogomolova I,Blagodatsky S,Kuzyakov Y.Microbial interactions affect sources of priming induced by cellulose.Soil Biology and Biochemistry,2014,74:39- 49.
    [25] Guenet B,Juarez S,Bardoux G,Abbadie L,Chenu C.Evidence that stable C is as vulnerable to priming effect as is more labile C in soil.Soil Biology and Biochemistry,2012,52:43- 48.
    [26] Rousk J,Hill P W,Jones D L.Priming of the decomposition of ageing soil organic matter:concentration dependence and microbial control.Functional Ecology,2015,29(2):285- 296.
    [27] Fontaine S,Mariotti A,Abbadie L.The priming effect of organic matter:a question of microbial competition?Soil Biology and Biochemistry,2003,35(6):837- 843.
    [28] de Graaff M A,Classen A T,Castro H F,Schadt C W.Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates.New Phytologist,2010,188(4):1055- 1064.
    [29] Xiao D,Huang Y,Feng S Z,Ge Y H,Zhang W,He X Y,Wang K L.Soil organic carbon mineralization with fresh organic substrate and inorganic carbon additions in a red soil is controlled by fungal diversity along a pH gradient.Geoderma,2018,321:79- 89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700