用户名: 密码: 验证码:
白骨壤人工湿地对模拟对虾养殖废水处理效果及细菌群落组成的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Different Hydraulic Loads in Mangrove (Avicennia marina) Constructed Wetland on Culture Wastewater
  • 作者:张超超 ; 李长玲 ; 曾奇韬 ; 黄翔鹄 ; 张宁 ; 符日超
  • 英文作者:ZHANG Chao-chao;LI Chang-ling;ZENG Qi-tao;HUANG Xiang-hu;ZHANG Ning;FU Ri-chao;College of Fisheries, Guangdong Ocean University;Engineering Technology Research Center for Algae Breeding and Application of Guangdong Province;Shenzhen Research Institute of Guangdong Ocean University;
  • 关键词:对虾 ; 养殖废水 ; 水力负荷 ; 人工湿地
  • 英文关键词:prawn;;aquaculture wastewater;;hydraulic load;;constructed wetland
  • 中文刊名:广东海洋大学学报
  • 英文刊名:Journal of Guangdong Ocean University
  • 机构:广东海洋大学水产学院;广东省藻类养殖及应用工程技术研究中心;广东海洋大学深圳研究院;
  • 出版日期:2019-05-17 16:19
  • 出版单位:广东海洋大学学报
  • 年:2019
  • 期:03
  • 基金:广东省海洋渔业科技与产业发展专项(A201508B08)
  • 语种:中文;
  • 页:73-81
  • 页数:9
  • CN:44-1635/N
  • ISSN:1673-9159
  • 分类号:X714
摘要
【目的】探讨白骨壤人工湿地处理模拟对虾养殖废水的效果。【方法】通过室内构建白骨壤垂直流人工湿地和无植被人工湿地系统,研究处理时间和水力负荷对人工湿地处理模拟对虾养殖废水的影响,并分析人工湿地内部生物膜的细菌群落结构。【结果】人工湿地启动60d后的稳定运行阶段,白骨壤人工湿地总氮和氨氮的去除率分别在77.19%~84.66%,91.62%~98.48%,无植被人工湿地总氮和氨氮去除率分别在41.40%~61.69%,47.08%~79.79%,白骨壤人工湿地对总氮和氨氮去除率显著高于无植被人工湿地(P <0.05);在总磷、有机物和总有机碳去除率方面,两者无显著差异。白骨壤人工湿地处理养殖废水3d后总氮、氨氮、总磷、有机物和总有机碳去除率分别为84.7%、94.1%、92.0%、64.1%和66.2%,出水浓度均低于海水养殖废水排放标准(GB3097-1997)。白骨壤人工湿地生物膜中变形杆菌门(Proteobacteria)、硝化螺旋菌门(Nitrospinae)丰度显著高于无植被人工湿地(P <0.05);无植被人工湿地蓝细菌占细菌总量的5.36%。水力负荷对总氮、氨氮和总磷的去除率影响显著(P<0.05);当水力负荷0.06m~3/(m~2·d~(-1))时,总氮、氨氮和总磷的去除率均达到最大值,分别为66.6%、75.0%和41.8%;日去污量均值为51.6、73.5和10.4 mg/d。有机物和总有机碳在不同水力负荷下去除率变化不显著(P> 0.05)。【结论】白骨壤构建海水人工湿地是循环海水养殖废水生物处理的一种有效途径。
        【Objective】The effects of Mangrove(Avicennia marina) in constructed wetland treatment on shrimp culture wastewater were investigated.【Method】The effects of treatment time and hydraulic load on the treatment of shrimp culture wastewater in constructed wetland were studied, and the bacterial community structure of biofilm in constructed wetland was analyzed.(Mangrove constructed wetland group, MCW;constructed wetland without Mangrove group, CW).【Result】The removal rates of total nitrogen(TN)and ammonia nitrogen(TAN) were 77.19%-84.66%, and 91.62%-98.48% in MCW group after 60 days, which were significantly higher than those in the CW group(P < 0.05). There was no significant difference in total phosphorus(TP), organic matter and total organic carbon(TOC)removal between group MCW and group CW(P < 0.05). The removal rates of TN, TAN, TP, organic matter and TOC were 84.7%, 94.1%, 92.0%, 64.1% and 66.2% respectively after 3 days of treatment of shrimp culture wastewater by group MCW. The effluent concentration was lower than the discharge standard of Mariculture Wastewater(GB3097-1997). The abundance of Proteobacteria and Nitrospinae in the biofilm of group MCW was significantly higher than that of the group CW(P < 0.05), and Cyanobacteria accounted for 5.36% of the total bacteria in the group CW. The removal rates of TN,TAN and TP were significantly affected by hydraulic load(P < 0.05). When hydraulic load was 0.06 m~3/(m~2.d~(-1)), the removal rates of TN, TAN and TP reached the maximum values, which were 66.6%,75.0% and 41.8% respectively. The average daily decontamination amount was 51.6 mg/d, 73.5 mg/d and 10.4 mg/d respectively. The removal rates of organic matter and TOC did not change significantly under different hydraulic loads(P > 0.05).【Conclusion】The construction of seawater constructed wetland with Avicennia marina is an effective way to treat wastewater from recirculating mariculture.
引文
[1]农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.中国渔业统计年鉴[M].北京:中国农业出版社,2018.
    [2]陈健,李良玉,杨壮志,等.南美白对虾养殖现状、存在问题及发展对策[J].渔业致富指南,2018,496(16):18-20.
    [3]郑辉.贝藻混养协同净化水产养殖废水技术研究[D].石家庄:河北科技大学,2014.
    [4]宋奔奔,刘鹰,石芳永,等.四种填料滤器处理养鱼废水的硝化性能[J].农业工程学报,2010,26(11):231-236.
    [5]臧维玲,张煜,戴习林,等.人工湿地联合塘内设施调控生产性虾塘水环境的效果与技术[J].水产学报,2012,36(4):568-575.
    [6]LIN Y F,JING S R,LEE D Y,et al.Nutrient removal from aquaculture wastewater using a constructed wetlands system[J].Aquaculture,2002,209(1-4):169-184.
    [7]LIN Y F,JING S R,LEE D Y.The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture[J].Environmental Pollution,2003,123(1):0-113.
    [8]YANG Y,WANG Z M,LIU C,et al.Enhanced P,N and Cremoval from domestic wastewater using constructed wetland employing construction solid waste(CSW)as main substrate[J].Water Science&Technology,2012,66(5):1022-1028.
    [9]SAEED T,AFRIN R,MUYEED A A,et al.Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh[J].Chemosphere,2012,88(9):1065-1073.
    [10]CHANG J J,WU S Q,DAI Y R,et al.Treatment performance of integrated vertical-flow constructed wetland plots for domestic wastewater[J].Ecological Engineering,2012,44(6):152-159.
    [11]WU S Q,CHANG J J,DAI Y R,et al.Treatment performance and microorganism community structure of;integrated vertical-flow constructed wetland plots for domestic;wastewater[J].Environmental Science&Pollution Research,2013,20(6):3789-3798.
    [12]张正,王清印,王印庚,等.弧形筛及生物净化池净化陆基工厂化海水养殖废水的效果[J].农业工程学报,2011,27(s2):176-181.
    [13]农业部渔业局养殖课题组.我国主要水产养殖方式研究[J].中国水产,2006(2):11-13.
    [14]马伟.我国工业化循环水养殖技术的发展展望[J].水能经济,2016(6):172-172.
    [15]吴振斌,李谷,付贵萍,等.基于人工湿地的循环水产养殖系统工艺设计及净化效能[J].农业工程学报,2006,22(1):129-133.
    [16]MITSCH W J,WISE K M.Water quality,fate of metals,and predictive model validation of a constructed wetland treating acid mine drainage[J].Water Research Oxford,1998,32(6):1888-1900.
    [17]SCHOLZ M,XU J.Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper[J].Bioresource Technology,2002,83(2):71-79.
    [18]YANG Q,TAM N F,WONG Y S,et al.Potential use of mangroves as constructed wetland for municipal sewage treatment in Futian,Shenzhen,China[J].Marine Pollution Bulletin,2008,57(6):735-743.
    [19]KLOMJEK P,NITISORAVUT S.Constructed treatment wetland:a study of eight plant species under saline conditions[J].Chemosphere,2005,58(5):585-593.
    [20]LI M,SUN L,SONG X.Adding maize cobs to vertical subsurface flow constructed wetlands treating marine recirculating aquaculture system effluents:carbon releasing kinetics and intensified nitrogen removal[J].Bioresource Technology,2019,274:267-271.
    [21]杨琼.红树林人工湿地对生活污水的净化效率及基质微生物结构与功能多样性研究[D].广州:中山大学,2008.
    [22]王俊力,陈桂发,刘福兴,等.臭氧氧化-苦草深度处理猪场废水对无机营养盐的去除效果初探[J].农业环境科学学报,2016,35(11):2195-2201.
    [23]虞丹君,罗海忠,徐志进,等.不同红树处理海水养殖尾水效果初探[J].科学技术与工程,2018,18(7):271-274.
    [24]高志勇,谢恒星,王志平,等.人工湿地处理废水中的植物和基质选择[J].渭南师范学院学报,2017,32(8):62-67.
    [25]丁怡,宋新山,严登华.不同基质在人工湿地脱氮中的应用及其研究进展[J].环境污染与防治,2012,34(5):88-90.
    [26]高锋,杨朝晖,李晨,等.秋茄人工湿地净化循环海水养殖废水效果[J].农业工程学报,2012,28(17):192-198.
    [27]成昊,叶芬,宋谋胜.表面水力负荷对锰渣陶瓷球填料人工湿地的影响研究[J].环境污染与防治,2017,39(6):594-603.
    [28]梁康,王飞华,梁威.水力负荷对垂直流人工湿地尾水深度处理的影响[C].西安:中国给水排水杂志社年会暨水处理热点技术高峰论坛,2014.
    [29]张海生,高海静.湿地植被对污水净化效果分析研究[J].环境科学与管理,2018,43(7):114-117.
    [30]张洪刚,洪剑明.人工湿地中植物的作用[J].湿地科学,2006,4(2):68-76.
    [31]由文辉.蓝藻水花的毒性及其生物控制[J].生物学通报,1994(6):8;34.
    [32]冯培勇,陈兆平,靖元孝.人工湿地及其去污机理研究进展[J].生态科学,2002,21(3):264-268.
    [33]袁敏,刘晓冰,唐美珍,等.生物炭固定菌强化人工湿地对低温污水中氮素去除的模拟研究[J].生态与农村环境学报,2018,34(5):463-468.
    [34]张翠萍,李淑英,王蓓,等.六氯苯胁迫下2种湿地植物根际土壤微生物数量与酶活性变化[J].生态与农村环境学报,2018,34(2):177-183.
    [35]马晓娜.复合湿地系统净化海水养殖废水中杀鲑气单胞菌及湿地微生物菌群研究[D].北京:中国科学院大学(中国科学院海洋研究所),2018.
    [36]房昀昊,彭剑峰,宋永会,等.高通量测序法表征潜流人工湿地中不同植物根际细菌群落特征[J].环境科学学报,2018,38(3):911-918.
    [37]齐雨.复合型人工湿地菌群结构及其对氮循环的影响研究[D].重庆:重庆大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700