用户名: 密码: 验证码:
中国西部大陆性冰川与海洋性冰川物质平衡变化及其对气候响应——以乌源1号冰川和帕隆94号冰川为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mass balance variation of continental glacier and temperate glacier and their response to climate change in western China:Taking Urumqi Glacier No.1 and Parlung No.94 Glacier as examples
  • 作者:牟建新 ; 李忠勤 ; 张慧 ; 徐春海 ; 金爽 ; 梁鹏斌
  • 英文作者:MU Jian-xin;LI Zhong-qin;ZHANG Hui;XU Chun-hai;JIN Shuang;LIANG Peng-bin;College of Geography and Environment Sciences,Northwest Normal University;State Key Laboratory of Cryospheric Science/Tianshan Glaciological Station,Northwest Institution of Eco-Environment and Resources,CAS;University of Chinese Academy of Sciences;
  • 关键词:物质平衡 ; 大陆性冰川 ; 海洋性冰川 ; 乌源1号冰川 ; 帕隆94号冰川 ; 气候变化
  • 英文关键词:glacier mass balance;;continental glaciers;;temperate glaciers;;Urumqi Glacier No.1;;Parlung No.94 Glacier;;climate change
  • 中文刊名:干旱区地理
  • 英文刊名:Arid Land Geography
  • 机构:西北师范大学地理与环境科学学院;中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室/天山冰川观测试验站;中国科学院大学;
  • 出版日期:2019-01-15
  • 出版单位:干旱区地理
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金重大研究计划(91425303);国家自然科学基金(41471058,41771077,41641003);; 中国科学院战略性先导科技专项(A类XDA2006020103)资助
  • 语种:中文;
  • 页:22-30
  • 页数:9
  • CN:65-1103/X
  • ISSN:1000-6060
  • 分类号:P343.6
摘要
为认识全球变暖背景下中国西部大陆性冰川与海洋性冰川物质平衡变化及其对气候响应,以天山乌鲁木齐河源1号冰川和藏东南帕隆94号冰川为例,结合大西沟与察隅站气象资料,对1980—2015年两条冰川的物质平衡变化特征及差异进行了分析。结果表明:36 a来乌源1号冰川与帕隆94号冰川物质平衡总体上均呈下降趋势,累积物质平衡达-17 102 mm w. e.与-8 159 mm w. e.,相当于冰川厚度减薄19 m与9. 01 m,且分别于1996、2004年左右发生突变。同期两条冰川所处区域年均温呈显著上升趋势,而降水量却表现出不同的变化态势;二者年内气温分配相仿,但降水分配差异较大。初步分析认为气温上升是导致乌源1号冰川与帕隆94号冰川物质亏损的主要原因,冰川区气温和降水变化幅度的差异和地性因子(坡度、冰川面积)的不同使得乌源1号冰川对气候变化响应的敏感性高于帕隆94号冰川,由于目前海洋性冰川物质平衡监测时段相对较短,为深入研究中国西部冰川物质平衡变化及过程仍需加强对冰川的持续观测。
        Glacier mass balance is a key parameter for monitoring strategies of the earth climate system,due to its direct and undelayed response to local atmospheric conditions. Considering the reliability of mass balance observation and data quality,Urumqi Glacier No. 1( UG1) in the Tianshan Mountains and Parlung No. 94 Glacier( PG94)in the Gangrigabu Range are selected as the reference glacier of continental glacier in northwest arid region and temperate glacier in southeast Tibetan Plateau of China,respectively. Thus,it is reasonable to take UG1 and PG94 as sample glaciers to indicate the mass balance fluctuation for continental glacier and temperate glacier and their response to climate change in western China. Combined with meteorological data of Daxigou and Zayu station,glacier mass balance variation and discrepancy for UG1 and PG94 from 1980 to 2015 are analyzed. The results indicated that the annual mass balance for UG1 and PG94 show a decreasing trend by-15. 70( P < 0. 01) and-35. 15 mm w. e. a-1( P < 0. 001),respectively. The cumulative mass balance for UG1 and PG94 are found to be-17 102 and-8 159 mm w. e. in 36 years,equivalent to ice thickness reduced by 19 m and 9. 01 m. Their mutation points occurred in 1996 and 2004 at the 0. 05 level,respectively. The annual mean temperature for UG1 and PG94 show a significant increasing trend by 0. 5 ℃ ·( 10 a)-1and 0. 3 ℃ ·( 10 a)-1,( P < 0. 001) respectively over the study period. And their mutation points occurred in 1996 and 2000 at the 0. 05 level,respectively. The annual precipitation for UG1 and PG94 show a different trend in 36 years,an increasing trend [34 mm ·( 10 a)-1,P < 0. 05]is found for UG1,while PG94 exhibits a decreasing trend [-57 mm ·( 10 a)-1]. The mutation point of annual precipitation occurred in 1988 for UG1,while for PG94 it was in 1982 and 2009 at the 0. 05 level. The inner-annual distribution of air temperature for UG1 and PG94 are almost similar,but inner-annual precipitation distribution is different in two glacial regions. There were 66% of annual precipitation concentrated in summer period for UG1,while spring and summer precipitation accounted for 38% and 37% of the annual precipitation in PG94,respectively. The correlation analysis between glacier mass balance and temperature and precipitation of UG1 and PG94 show that mass balance are more closely with temperature in term of precipitation,especially for summer temperature. The response of glacier mass balance is not only affected by the regional climate conditions,but also depends on the topographic conditions. It is higher in UG1 than that of PG94 owing to the increase of annual mean and summer temperature of UG1 in the past 36 years. Furthermore,UG1 has larger slopes and smaller area than PG94,making the UG1 more sensitive to the recent climate warming. Considering the monitoring history of temperate glacier mass balance is relatively short,it is still necessary to strengthen glacier mass balance observation,which could provide a scientific data to understand the changes and processes of glacier mass balance in western China.
引文
[1]秦大河,姚檀栋,丁永建,等.冰冻圈科学辞典[M].北京:气象出版社,2014.[QIN Dahe,YAO Tandong,DING Yongjian,et al.Glossary of cryosphere science[M]. Beijing:China Meteorological Press,2014.]
    [2] ZEMP M,ROER I,KAAB A,et al. Global glacier changes:Facts and figures[M]. World Glacier Monitoring Service,Zürich,Switzerland,2008.
    [3] ZEMP M,FREY H,GARTNER-ROER I,et al. Historically unprecedented global glacier decline in the early 21stcentury[J]. Journal of Glaciology,2015,61(228):745-762.
    [4]刘时银,姚晓军,郭万钦,等.基于第二次冰川编目的中国冰川现状[J].地理学报,2015,70(1):3-16.[LIU Shiyin,YAO Xiaojun,Guo Wanqin,et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica,2015,70(1):3-16.]
    [5]李慧林,李忠勤,秦大河.冰川动力学模式基本原理和参数观测指南[M].北京:气象出版社,2009.[LI Huilin,LI Zhongqin,QIN Dahe. Basic principles of glacier dynamic models and observation guide for corresponding parameters[M]. Beijing:China Meteorological Press,2009.]
    [6]谢自楚,刘潮海.冰川学导论[M].上海:上海科学普及出版社,2010.[XIE Zichu,LIU Chaohai. Introduction of glacial science[M]. Shanghai:Shanghai Popular Science Press,2010.]
    [7] SU Zhen,LIU Shiyin. Response of monsoonal temperate glaciers to global warming since the Little Ice Age[J]. Quaternary International,2002,97:123-131.
    [8]杜建括,何元庆,李双,等.横断山区典型海洋型冰川物质平衡研究[J].地理学报,2015,70(9):1415-1422.[DU Jiankuo,HE Yuanqing,Li Shuang,et al. Mass balance of a typical monsoonal temperate glacier in Hengduan Mountains Region[J]. Acta Geographica Sinica,2015,70(9):1415-1422.]
    [9]李宗省,何元庆,贾文雄,等.全球变暖背景下海螺沟冰川近百年的变化[J].冰川冻土,2009,31(1):75-81.[LI Zongxing,HE Yuanqing,JIA Wenxiong,et al. Changes in Hailuogou Glacier during the recent 100 years under global warming[J]. Journal of Glaciology and Geocryology,2009,31(1):75-81.]
    [10]刘伟刚.珠穆朗玛峰绒布冰川文气象特征及径流模拟研究[D].北京:中国科学院大学,2010.[LIU Weigang. Hydrometeorological characteristics and runoff simulation in the Rongbuk Glacier catchment in Mt. Qomolangma,Central Himalayas,China[D].Beijing:University of Chinese Academy of Sciences,2010.]
    [11]杨威,姚檀栋,徐柏青,等.青藏高原东南部岗日嘎布地区冰川严重损耗与退缩[J].科学通报,2008,53(17):2091-2095.[YANG Wei,YAO Tandong,XU Baiqing,et al. Graveness waste and retreat of glacier in Gangrigabu region southeast of Qinghai Tibetan Plateau[J]. Chinese Science Bulletin,2008,53(17):2091-2095.]
    [12] ZEMP M,GARTNER-ROER I,NUSSBAUMER S,et al. Global glacier change bulletin No. 1(2012—2013)[M]. Switzerland:World Glacier Monitoring Service,2015.
    [13] ZEMP M,NUSSBAUMER S,GARTNER-ROER I,et al. Global Glacier change bulletin No. 2(2014—2015)[M]. Switzerland:World Glacier Monitoring Service,2017.
    [14]王淑红,谢自楚,李巧媛.近期东西天山冰川变化的对比研究[J].冰川冻土,2008,30(6):946-953.[WANG Shuhong,XIE Zichu,LI Qiaoyuan. Comparison study of glacier variations in East and West Tianshan Mountains[J]. Journal of Glaciology and Geocryology,2008,30(6):946-953.]
    [15]苏勃,李忠勤,张明军,等.大陆型冰川与海洋型冰川物质平衡对比研究——以天山和阿尔卑斯山典型冰川为例[J].冰川冻土,2015,37(5):1131-1140.[SU Bo,LI Zhongqin,ZHANG Mingjun,et al. A comparative study on mass balance between the continental glaciers and the temperate glaciers:Taking the typical glaciers in the Tianshan Mountains and the Alps as examples[J].Journal of Glaciology and Geocryology,2015,37(5):1131-1140.]
    [16] LIU Qiao,LIU Shi. Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century[J]. Climate Dynamics,2016,46(1-2):301-316.
    [17] WANG P,LI Z,LI H,et al. Analyses of recent observations of Urumqi Glacier No. 1,Chinese Tianshan Mountains[J]. Environmental Earth Sciences,2016,75(8):720.
    [18]张国飞,李忠勤,王文彬,等.天山乌鲁木齐河源1号冰川1959—2009年物质平衡变化过程及特征研究[J].冰川冻土,2012,34(6):1301-1309.[ZHANG Guofei,LI Zhongqin,WANG Wenbin,et al. Change processes and characteristics of mass balance of the Urümqi Glacier No. 1 at the headwaters of the Urumqi River,Tianshan Mountains,during 1959—2009[J]. Journal of Glaciology and Geocryology,2012,34(6):1301-1309.]
    [19] YANG Wei,YAO Tandong,GUO Xiaofeng,et al. Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity[J]. Journal of Geophysical Research:Atmospheres,2013,118(17):9579-9594.
    [20]姚红兵,李忠勤,王璞玉,等.近50 a天山乌鲁木齐河源1号冰川变化分析[J].干旱区研究,2015,32(3):442-447.[YAO Hong Bin,LI Zhongqin,WANG Puyu,et al. Area variation analysis of Urumqi Glacier No. 1 in past 50 decades[J]. Arid Zone Research,2015,32(3):442-447.]
    [21] YANG Wei,YAO Tandong,XU Baiqing,et al. Characteristics of recent temperate glacier fluctuations in the Parlung Zangbo River basin,southeast Tibetan Plateau[J]. Chinese Science Bulletin,2010,55(20):2097-2102.
    [22] YANG Wei,GUO Xiaofeng,YAO Tandong,et al. Recent accelerating mass loss of southeast Tibetan Glaciers and the relationship with changes in macroscale atmospheric circulations[J]. Climate Dynamics,2016,47(3-4):805-815.
    [23]鲁春霞,王菱,谢高地,等.青藏高原降水的梯度效应及其空间分布模拟[J].山地学报,2007,25(6):655-663.[LU Chunxia,WANG Ling,XIE Gaodi,et al. Altitude effect of precipitation and spatial distribution of Qinghai-Tibetan Plateau[J]. Journal of Mountain Science,2007,25(6):655-663.]
    [24] OERLEMANS J,ANDERSON B,HUBBARD A,et al. Modelling the response of glaciers to climate warming[J]. Climate Dynamics,1998,14(4):267-274.
    [25] XU X,PAN B,HU E,et al. Responses of two branches of Glacier No. 1 to climate change from 1993 to 2005,Tianshan,China[J].Quaternary International,2011,236(1-2):143-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700