用户名: 密码: 验证码:
水稻叶倾角分子机制及育种应用的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Molecular Mechanisms of Rice Leaf Inclination and Its Application in Breeding
  • 作者:胡娟 ; 林晗 ; 徐娜 ; 焦然 ; 戴志俊 ; 鲁草林 ; 饶玉春 ; 王跃星
  • 英文作者:HU Juan;LIN Han;XU Na;JIAO Ran;DAI Zhijun;LU Caolin;RAO Yuchun;WANG Yuexing;College of Chemistry and Life Sciences, Zhejiang Normal University;China National Rice Research Institute,State Key Laboratory of Rice Biology;
  • 关键词:水稻 ; 叶倾角 ; 分子机制 ; 育种应用
  • 英文关键词:rice;;leaf inclination;;molecular mechanism;;breeding application
  • 中文刊名:中国水稻科学
  • 英文刊名:Chinese Journal of Rice Science
  • 机构:浙江师范大学化学与生命科学学院;中国水稻研究所水稻生物学国家重点实验室;
  • 出版日期:2019-09-10
  • 出版单位:中国水稻科学
  • 年:2019
  • 期:05
  • 基金:国家重大科技专项(2016ZX08009003-003-008);; 浙江省粮食新品种选育专项(2016C02050-1)
  • 语种:中文;
  • 页:11-20
  • 页数:10
  • CN:33-1146/S
  • ISSN:1001-7216
  • 分类号:S511
摘要
水稻叶倾角是指叶片与茎秆之间的夹角,叶倾角影响叶片光合作用速率,与株型和产量密切相关,如直立叶片就是水稻理想株型形态因素之一。叶倾角的大小受到多种植物激素的调控,是油菜素内酯、生长素、赤霉素、茉莉酸等多种激素相互作用的结果,另外,其他因素如根系分布、叶片大小、生长环境等也会对水稻叶倾角大小产生一定的影响。本文根据水稻叶倾角的研究进展,着重从叶枕的发育、激素水平及其他因素等方面,对水稻叶倾角的分子机制及其在育种中的应用进行阐述与总结,以期为水稻株型的分子设计育种提供参考,为进一步提高水稻的产量奠定理论基础。
        Rice leaf inclination refers to the degree of bending between leaves and stems, which is one of the most important factors affecting plant architecture and grain yield. Leaf inclination affects leaf photosynthesis rate. Upright leaves are one of the factors of the ideal plant type of rice. Leaf inclination is regulated by a variety of genes, and is the result of interactions between various plant hormones such as brassinosteroids, auxin, gibberellin, and jasmonic acid. Other factors such as root distribution, leaf size, and growth environment also have a certain impact on the leaf inclination. Based on the research progress of rice leaf inclination, this review summarizes and elaborates on the molecular mechanism of rice leaf inclination and the application of leaf inclination in breeding from the aspects of lamina joint development, hormone levels and other factors, so as to provide reference for ideal plant type breeding and lay a theoretical foundation for further improvement of rice yield.
引文
[1]程式华,陈温福,谢华安,武小金.中国超级稻育种.北京:科学出版社, 2010.Chen S H, Chen W F, Xie H A, Wu X J. Chinese Super Rice Breeding. Beijing:Science Press, 2010.(in Chinese)
    [2]吴比,胡伟,邢永忠.中国水稻遗传育种历程与展望.遗传, 2018, 40(10):841-857.Wu B, Hu W, Xing Y Z. History and prospect of rice genetics and breeding in China. Genetics, 2018, 40(10):841-857.(in Chinese with English abstract)
    [3] Khush G S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005, 59(1):1-6.
    [4] Yang S R, Chen W F, Zhang L B. Trends in breeding rice forideotype. Chin J Rice Sci, 1988.
    [5]袁隆平.杂交水稻超高产育种.杂交水稻, 1997(6):1-6.Yuan L P. Super high yield breeding of hybrid rice.Hybrid Rice, 1997(6):1-6.(in Chinese with English abstract)
    [6]徐静,王莉,钱前,张光恒.水稻叶片形态建成分子调控机制研究进展.作物学报, 2013, 39(5):767-774.Xu J, Wang L, Qian Q, Zhang G H. Research advance in molecule regulation mechanism of leaf morphogenesis in rice(Oryza sativa L.). Acta Agron Sin, 2013, 39(5):767-774.(in Chinese with English abstract)
    [7] Mantilla-Perez M B, Salas Fernandez M G. Differential manipulation of leaf angle throughout the canopy:Current status and prospects. J Exp Bot, 2017, 68(21-22):5699-5717.
    [8]朱长丰,梁利君,曾思远,李天伟,董冠杉,洪德林.水稻剑叶角度qFla-8-2位点的精细定位.中国水稻科学, 2016, 30(1):27-34.Zhu C F, Liang L J, Zeng S Y, Li T W, Dong G S, Hong D L. Fine mapping of qFla-8-2 for flag leaf angle in rice.Chin J Rice Sci, 2016, 30(1):27-34.(in Chinese with English abstract)
    [9]周行岳,吴向东,王奉斌,王容.高产水稻品种株型模式探讨.新疆农垦科技, 1999(4):30-31.Zhou X Y, Wu X D, Wang F B, Wang R. Discussion on plant type pattern of high yield rice varieties. Xinjiang Agric Reclam Sci Technol, 1999(4):30-31.(in Chinese with English abstract)
    [10] Duan K, Li L, Hu P, Xu S P, Xu Z H, Xue H W. A brassinolide-suppressed rice MADS-box transcription factor, OsMDP1, has a negative regulatory role in BR signaling. Plant J, 2010, 47(4):519-531.
    [11] Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C J, Dubouzet J G, Kikuchi S,Sekimoto H, Kamakura T, Mori M. BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein,is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol,2009, 151(2):669-680.
    [12] Sun S Y, Chen D H, Li X M, Qiao S A, Li C X, Shen H Y,Wang X E. Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev Cell, 2015,34(2):220-228.
    [13] Zhao S Q, Hu J, Guo L B, Qian Q, Xue H W. Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res,2010, 20(8):935-947.
    [14] Luo X Y, Zheng J S, Huang Y M, Huang H C, Wang L G,Fang X J. Phytohormones signaling and crosstalk regulating leaf angle in rice. Plant Cell Rep, 2016,35(12):2423-2433.
    [15] Clouse S D, Sasse J M. BRASSINOSTEROIDS:Essential regulators of plant growth and development.Annu Rev Plant Physiol Plant Mol Biol, 1998, 49:427-451.
    [16] Fabregas N, Cano-delgado A I. Turning on the microscope turret:A new view for the study of brassinosteroid signaling in plant development. Physiol Plant, 2014, 151(2):172-183.
    [17] Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol, 2003, 54:137-64.
    [18] Wada K, Marumo S, Abe H, Morishita T, Nakamura K,Uchiyama M, Mori M. A rice lamina inclination test:A micro-quantitative bioassay for brassinosteroids. J Agric Chem Soc, 1984, 48(3):719-726.
    [19] Choe S. Brassinosteroid biosynthesis and inactivation.Physiol Plant, 2010, 126(4):539-548.
    [20] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S,Fujioka S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf(d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2004, 15(12):2900-2910.
    [21] Zhi H, Miyako U T, Shozo F, Suguru T, Shigeo Y, Yasuko H, Motoyuki A, Hidemi K, Makoto M. The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell,2005, 17(8):2243-2254.
    [22] Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S,Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17(3):776-790.
    [23] Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol, 2006, 24(1):105-109.
    [24] Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S,Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12(9):1591-1606.
    [25] Li D, Wang L, Wang M, Xu Y Y, Luo W, Liu Y J, Xu Z H, Li J, Chong K. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield.Plant Biotechnol J, 2009, 7(8):791-806.
    [26] Zhang C, Xu Y, Guo S, Zhu J, Huan Q, Liu H, Wang L,Luo G, Wang X, Chong K. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice.PLoS Genet, 2012, 8(4):e1002686.
    [27] Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C.DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinaseto mediate brassinosteroid responses in rice. Plant Cell,2012, 24(6):2562-2577.
    [28] Wang L, Xu Y, Zhang C, Ma Q, Joo S H, Kim S K, Xu Z,Chong K. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS ONE, 2008, 3(10):e3521.
    [29] Qiao S L, Sun S Y, Wang L L, Wu Z H, Li C X, Li X M,Wang T, Leng L N, Tian W S, Lu T G, Wang X E. The RLA1/SMOS1 transcription factor functions with OsBZR1to regulate brassinosteroid signaling and rice architecture,Plant Cell, 2017, 29(2):292-309.
    [30] Zhang G, Song X, Guo H, Wu Y, Chen X, Fang R. A small G protein as a novel component of the rice brassinosteroid signal transduction. Mol Plant, 2016,9(9):1260-1271.
    [31] Zhou X, Wang J, Peng C, Zhu X, Yin J, Li W, He M,Wang J, Chern M, Ronald P, Chen X. Four receptor-like cytoplasmic kinases regulate development and immunity in rice. Plant Cell Environ, 2016, 39(6):1381-1392.
    [32] Bai M Y, Zhang L Y, Gampala S S, Zhu S W, Song W Y,Chong K, Wang Z Y. Functions of OsBZR1 and 14-3-3proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA, 2007, 104(34):13839-13844.
    [33] Zhang L Y, Bai M Y, Wu J, Zhu J Y, Wang H, Zhang Z,Wang W, Sun Y, Zhao J, Fujioka S, Lin W H, Chong K,Lu T, Wang Z Y. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell, 2009, 21(12):3767-3780.
    [34] Jang S, An G, Li H Y. Rice leaf angle and grain size are affected by the OsBUL1 transcriptional activator complex. Plant Physiol, 2017, 173(1):688-702.
    [35] Wang L, Xu Y Y, Ma Q B. Heterotrimeric G proteinαsubunit is involved in rice brassinosteroid response. Cell Res, 2006, 16(12):916-922.
    [36] Hu X, Qian Q, Xu T, Zhang Y, Dong G, Gao T, Xie Q,Xue Y. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G alpha subunit to regulate brassinosteroid-mediated growth in rice. PLoS Genet,2013, 9(3):e1003391.
    [37] Feng Z, Wu C, Wang C, Roh J, Zhang L, Chen J, Zhang S, Zhang H, Yang C, Hu J, You X, Liu X, Yang X, Guo X,Zhang X, Wu F, Terzaghi W, Kim S K, Jiang L, Wan J.SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. J Exp Bot, 2016,67(14):4241-4253.
    [38] Zhao X Q, Sun J, Cao X F, Song X W. Epigenetic mutation of RAV6 affects leaf angle and seed size in rice.Plant Physiol, 2015, 169(3):2118-2128.
    [39] Tian X, Li X, Zhou W, Ren Y, Wang Z, Liu Z, Tang J,Tong H, Fang J, Bu Q. Transcription factor OsWRKY53positively regulates brassinosteroid signaling and plant architecture. Plant Physiol, 2017, 175(3):1337-1349.
    [40] Davies P J. Plant hormones:Physiology, biochemistry and molecular biology. Sci Hortic, 1996, 66(3):267-270.
    [41] Li L C, Kang D M, Chen Z L, Qu L J. Hormonal regulation of leaf morphogenesis in Arabidopsis. J Integr Plant Biol, 2010, 49(1):75-80.
    [42] Song Y, You J, Xiong L. Characterization of Os IAA1gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol Biol, 2009, 70(3):297-309.
    [43] Xia K F, Wang R, Ou X J, Fang Z M, Tian C J, Duan J,Wang Y Q, Zhang M Y. OsTIR1 and OsAFB2 down regulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE, 2012, 7(1):e30039.
    [44] Peer W A. From perception to attenuation:Auxin signalling and responses. Curr Opin Plant Biol, 2013,16(5):561-568.
    [45] Luo J, Zhou J J, Zhang J Z. Aux/IAA gene family in plants:Molecular structure, regulation, and function.Inter J Mol Sci, 2018, 19(1):259-276.
    [46] Zhao S Q, Xiang J J, Xue H W. Studies on the rice LEAF INCLINATION1(LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Mol Plant,2013, 6(1):174-187.
    [47] Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L. A GH3 family member, Os GH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot, 2012, 63(18):6467-6480.
    [48] Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Wang J,Yang Y, Zhu M. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice(Oryza sativa). New Phytol, 2012, 196(1):149-161.
    [49] Qu L, Lin L B, Xue H W. Rice miR394 suppresses leaf inclination through targeting an F-box gene, LEAF INCLINATION 4. J Integr Plant Biol, 2019, 61(4):406-416.
    [50] Chen S H, Zhou L J. SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling, PLoS Genet, 2018,14(11):e1007829.
    [51] Zhang S, Wang S, Xu Y, Yu C, Shen C, Qian Q, Geisler M, Jiang De A, Qi Y. The auxin response factor,OsARF19, controls rice leaf angles through positively regulating Os GH3-5 and OsBRI1. Plant Cell Environ,2015, 38(4):638-654.
    [52] Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S.Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. Plant J, 2013,73(4):676-688.
    [53] Liu X, Yang C Y, Miao R, Zhou C L, Cao P H, Lan J, Zhu X J, Mou C L, Huang Y S, Liu S J, Tian Y L, Nguyen T L, Jiang L, Wan J M. DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling. Rice, 2018, 11(1):46-58.
    [54] Liu J M, Park S J, Huang J, Lee E J, Xuan Y H, Je B I,Kumar V, Priatama R A, Raj K V, Kim S H, Min M K,Cho J H, Kim T H, Chandran A K, Jung K H, Takatsuto S, Fujioka S, Han C D. Loose Plant Architecture1(LPA1)determines lamina joint bending by suppressing auxin signaling that interacts with C-22-hydroxylated and6-deoxo brassinosteroids in rice. J Exp Bot, 2016, 67(6):1883-1895.
    [55] Nakamura A, Fujioka S, Takatsuto S, Tsujimoto M,Kitano H, Yoshida S, Asami T, Nakano T. Involvement of C-22-hydroxylated brassinosteroids in auxin-induced lamina joint bending in rice. Plant Cell Physiol, 2009,50(9):1627-1635.
    [56] Hedden P, Sponsel V. A century of gibberellin research. J Plant Growth Regul, 2015, 34(4):740-760.
    [57] Ferrero-Serrano A, Assmann S M. The a-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. J Exp Bot, 2016, 67(11):3433-3443.
    [58] Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H,Asano K, Saji S, Hongyu X, Ashikari M, Kitano H,Yamaguchi I, Matsuoka M. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 2007, 19(7):2140-2155.
    [59] Ueguchi-Tanaka M, Fujisawa Y, Ashikari M, Iwasaki Y,Kitano H, Matsuoka M. Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 2000, 97(21):11 638-11 643.
    [60] Shimada A, Ueguchi-Tanaka M, Sakamoto T, Fujioka S,Takatsuto S, Yoshida S, Sazuka T, Ashikari M, Matsuoka M. The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J, 2006,48(3):390-402.
    [61] Wang L, Wang Z, Xu Y, Joo S H, Kim S K, Xue Z, Xu Z,Wang Z, Chong K. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J,2009, 57(3):498-510.
    [62] Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q, Chu C. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell,2014, 26(11):4376-4393.
    [63] Cao H, Chen S. Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene. Plant Growth Regul, 1995, 16(2):189-196.
    [64] Li X, Sun S, Li C, Qiao S, Wang T, Leng L, Shen H,Wang X. The Strigolactone-related mutants have enhanced lamina joint inclination phenotype at the seedling stage. J Genet Genom, 2014, 41(11):605-608.
    [65] Gan L, Wu H, Wu D, Zhang Z, Guo Z, Yang N, Xia K,Zhou X, Oh K, Matsuoka M, Ng D, Zhu C. Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice. Plant Sci, 2015, 241:238-245.
    [66] Ning J, Zhang B, Wang N, Zhou Y, Xiong L. Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell, 2011,23(12):4334-4347.
    [67] Wang D, Qin Y, Fang J, Yuan S, Peng L, Zhao J, Li X. A missense mutation in the Zinc finger domain of OsCESA7deleteriously affects cellulose biosynthesis and plant growth in rice. PLoS ONE, 2016, 11(4):e0153993.
    [68] Luan W, Liu Y, Zhang F, Song Y, Wang Z, Peng Y, Sun Z.OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. Plant Biotechnol J, 2011, 9(4):513-524.
    [69] Ohmori Y, Toriba T, Nakamura H, Ichikawa H, Hirano H Y. Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice.Plant J, 2011, 65(1):77-86.
    [70] Zhang J, Tang W, Huang Y, Niu X, Zhao Y, Han Y, Liu Y.Down-regulation of a LBD-like gene, Os IG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice. J Exp Bot, 2015, 66(1):99-112.
    [71] Lee J, Park J J, Kim S L, Yim J, An G. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Mol Biol, 2007,65(4):487-499.
    [72] Wu X, Tang D, Li M, Wang K, Cheng Z. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol, 2013, 161(1):317-329.
    [73] Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B,Wang X, Li J. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007,17(5):402-410.
    [74]凌启鸿,陆卫平.水稻根系分布与叶角关系的研究初报.作物学报, 1989(2):123-131.Ling Q H, Lu W P. Preliminary report on the relationship between rice root distribution and leaf angle. Acta Agron Sin, 1989(2):123-131.(in Chinese with English abstract)
    [75]王彤,阙补超,夏明,郑英杰,于亚辉,王莹,李林蔚,陈广红,王绍林.水稻产量和品质的研究进展.北方水稻, 2017, 47(2):51-55.Wang T, Que B C, Xia M, Zheng Y J, Yu Y H, Wang Y, Li L W, Chen G H, Wang S L. Research progress in rice yield and quality. Northern Rice, 2017, 47(2):51-55.(in Chinese with English abstract)
    [76]董海娇.基于全基因组关联分析的水稻分蘖角度和剑叶夹角的遗传基础解析.武汉:华中农业大学, 2017.Dong H J. Genetic basis analysis of rice tiller angle and flag leaf angle based on genome-wide association analysis. Wuhan:Huazhong Agricultural University,2017.(in Chinese with English abstract)
    [77] Luo Y F, Ma X M, Cheng J F. The relationship between flag leaf angle of various rice germplasms and their nitrogen nutrition efficiencies. Chin Agric Sci Bull, 2014,30(18):29-34.
    [78] Mach J. So inclined:Phosphate status and leaf angle in rice. Plant Cell, 2018, 30(4):743-744.
    [79] Ruan W, Guo M, Xu L. An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice. Plant Cell, 2018, 30(4):853-870.
    [80]左科生,李育,钟平安.水稻理想株型与超高产育种的研究进展.江西农业学报, 2003, 15(1):37-42.Zuo K S, Li Y, Zhong P A. Research progress on ideal plant type and super high yield breeding of rice. J Jiangxi Agric Univ, 2003, 15(1):37-42.(in Chinese with English abstract)
    [81] Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol,2006, 141(3):924-931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700