用户名: 密码: 验证码:
基于正交实验设计的磺胺甲恶唑在渔业水体中的消解动态规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sulfamethoxazole in Aquaculture Water by Orthogonal Experimental Design: Degradation Dynamics
  • 作者:方龙香 ; 宋超 ; 范立民 ; 孟顺龙 ; 裘丽萍 ; 陈家长
  • 英文作者:Fang Longxiang;Song Chao;Fan Limin;Meng Shunlong;Qiu Liping;Chen Jiazhang;Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences;Laboratory of Quality &Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs;Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs;
  • 关键词:磺胺甲恶唑 ; 养殖水体 ; 环境因素 ; 半衰期 ; 消除率 ; 消解动态
  • 英文关键词:sulfamethoxazole;;aquaculture water;;environmental factors;;the half-life;;elimination rate;;degradation dynamics
  • 中文刊名:中国农学通报
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:中国水产科学研究院淡水渔业研究中心;农业农村部水产品质量安全环境因子风险评估实验室(无锡);农业农村部水产品质量安全控制重点实验室;
  • 出版日期:2019-09-23
  • 出版单位:中国农学通报
  • 年:2019
  • 期:27
  • 基金:国家重点研发计划课题“典型养殖用药的迁移规律及防控技术”(2017YFC1600704);; 中央级科研院所基本科研业务费“水产养殖抗生素减量与替代的精准化技术研究”(2019JBFZ04);; 国家自然科学基金青年基金项目“不同剂量抗生素磺胺甲噁唑对罗非鱼肠道微生态-宿主代谢轴调节的差异性研究”(31802271)
  • 语种:中文;
  • 页:152-158
  • 页数:7
  • CN:11-1984/S
  • ISSN:1000-6850
  • 分类号:X714
摘要
为了探究磺胺甲恶唑(sulfamethoxazole, SMZ)在渔业水体中的自然降解规律,本试验选取养殖水环境中常见的因素(温度、pH值、敞蔽条件),通过正交实验探究这3个因素对SMZ在自然养殖水体中消解动态的影响。试验初期各处理SMZ浓度保持一致,实验周期内定期取水样检测水体中SMZ的浓度变化,SMZ消解动态符合一级反应动力学方程,计算各处理中SMZ药物的半衰期和消除率。结果表明:18个处理组SMZ的半衰期及其消除率变化范围分别为4.88~12.89天、28%~77%。方差分析得出:在实验水平范围内,温度、pH值因素对SMZ的消解结果有显著影响,但敞蔽的影响较小。因此,适当提高养殖水体温度、调节水体pH值等条件均有利于促进SMZ的降解。
        To explore the natural degradation rule of sulfamethoxazole(SMZ) in aquaculture water, we selected common factors in aquaculture water environmental(temperature, pH value and open or cover system conditions), and studied the effects of these 3 factors on degradation dynamics of SMZ in natural aquaculture water by the orthogonal experiment. The SMZ concentration of each treatment remained consistent in the initial stage of the experiment; water samples were taken regularly to detect the change of SMZ concentration in water body, which was consistent with the first-order kinetic equation, and the half-life and the elimination rate of SMZ in each treatment were calculated. The results showed that: the variation range of half-life of SMZ and its elimination rate in 18 treatment groups was 4.88-12.89 days, 28%-77%, respectively. Anova analysis showed that: within the range of the experimental level, temperature and pH value had a significant influence on elimination of SMZ, but the influence of the open or cover condition was small. Therefore, properly improving the conditions of temperature and pH value of aquaculture water is conducive to promote the degradation of SMZ.
引文
[1]阮成旭,袁重桂,陶翠丽,等.不同养殖模式对大黄鱼肉质的影响[J].水产科学,2017,36(5):623-627.
    [2]黄凌.对虾养殖工厂化,一年三季效益好[J].农家之友,2018,No.408(06):36-37.
    [3]于清海,王青林,宫春光,等.不同养殖模式下牙鲆生产成本与效益分析[J].中国水产,2017(8):88-90.
    [4]吕美东,赵旭乾,赵金发.对虾工厂化养殖技术及其对弧菌病的防治优势分析[J].乡村科技,2018(10):12-15.
    [5]刘俊强.水产生态养殖技术的应用研究[J].当代畜牧,2015(5Z):97-98.
    [6] Shi J, Wei H, Zhao L, et al. A physical-biological coupled aquaculture model for a suspended aquaculture area of China[J].Aquaculture,2011,318(3):412-424.
    [7]李兆新,董晓,孙晓杰,等.渔业养殖环境中抗生素残留检测与控制技术研究进展[J].食品安全质量检测学报,2017,8(7):2678-2686.
    [8]中国水产科学研究院珠江水产研究所.磺胺类药物水产养殖使用规范,SCT 1084—2006[S].广州,SC,2006:03.
    [9] Liu X, Steele J C, Meng X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture:A review[J].Environmental Pollution,2017,223(5):161-169.
    [10]董晓.渔业养殖环境中抗生素残留检测及消除技术[D].上海:上海海洋大学,2017.
    [11]李秀文,何益得,张巍,等.磺胺类抗生素对水环境的污染及生态毒理效应[J].环境科学与技术,2018,41(S1):62-67.
    [12]刘伟,王慧,陈小军,等.抗生素在环境中降解的研究进展[J].动物医学进展,2009,30(3):89-94.
    [13]张骞月.水产养殖环境中磺胺类抗生素抗性基因污染的研究[D].南京:南京农业大学,2016.
    [14] Amy P, Ruoting P, Heather S, et al. Antibiotic resistance genes as emerging contaminants:studies in northern Colorado[J].Environmental Science&Technology,2006,40(23):7445.
    [15]李明亮.环境中磺胺类药物的降解行为及影响因素的研究[D].新乡:河南师范大学,2012.
    [16] Wang H, Ren L, Xin Y, et al. Antibiotic residues in meat, milk and aquatic products in Shanghai and human exposure assessment[J].Food Control,2017,80(3):217-225.
    [17]陈国鑫.水产养殖水中抗生素的残留特性及其去除技术研究[D].广州:广东工业大学,2015.
    [18] Saxena S K, Rangasamy R, Krishnan A A, et al. Simultaneous determination of Multi-Residue and Multi-Class antibiotics in aquaculture shrimps by UPLC-MS/MS[J].Food Chemistry,2018,260(63):336-336.
    [19] Liu Y, Lonappan L, Brar S K, et al. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides:A review[J].The Science of the total environment,2018,645(27):60-70.
    [20]陈小丽,魏金华,蔺中,等.抗生素的微生物降解研究进展[J].现代农业科技,2018(16):167-168.
    [21]乔军旗,刘霞.养殖水体变化对鱼的生长影响[J].河北渔业,2015(6):62-63.
    [22]陈新英.对虾养殖如何科学清塘消毒[J].科学养鱼,2016(3):91.
    [23] Ingerslev F, Torang L, Loke M L, et al. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems[J].Chemosphere,2001,44(4):865-872.
    [24]胡枭,樊耀波.影响有机污染物在土壤中的迁移,转化行为的因素[J].环境科学进展,1999(5):14-22.
    [25]封香香.污泥堆肥过程中磺胺甲恶唑(SMX)降解特性及影响因素的研究[D].西安:陕西科技大学,2018.
    [26]张从良,王岩,王福安.磺胺类药物在土壤中的微生物降解[J].农业环境科学学报,2007,26(5):1658-1662.
    [27] Zhang Y, Hu S, Zhang H, et al. Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application[J].Science of the Total Environment,2017,607-608(10):1348-1356.
    [28]张从良.磺胺类药物环境行为及相关热力学基础研究[D].郑州:郑州大学,2007.
    [29]周娇,程景胜,元英进.混菌生物降解磺胺类药物研究进展[J].应用与环境生物学报,2017,23(1):169-174.
    [30]刘元望,李兆君,冯瑶,等.微生物降解抗生素的研究进展[J].农业环境科学学报,2016,35(2):212-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700