用户名: 密码: 验证码:
基于GIS的汉江流域水土保持时空变化特征分析(2001—2017年)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Temporal and Spatial Variation Characteristics of Soil and Water Conservation in Hanjiang River Basin Based on GIS( 2001—2017)
  • 作者:刘海 ; 黄跃飞 ; 林苗 ; 王敏
  • 英文作者:LIU Hai;HUANG Yuefei;LIN Miao;WANG Min;Faculty of Resources and Environment Science,Hubei University;School of Remote Sensing and Information,Wuhan University;Jiangxi Provincial Geomatics Center;
  • 关键词:水土保持量 ; 时空变化 ; GIS ; 汉江流域
  • 英文关键词:soil and water conservation;;temporal and spatial variation;;GIS;;Hanjiang River basin
  • 中文刊名:地域研究与开发
  • 英文刊名:Areal Research and Development
  • 机构:湖北大学资源环境学院;武汉大学遥感信息工程学院;江西省基础地理信息中心;
  • 出版日期:2019-06-10
  • 出版单位:地域研究与开发
  • 年:2019
  • 期:03
  • 基金:2015测绘地理信息公益性行业科研专项项目(201512026);; 中国工程院重大院士咨询项目(2015-ZD-05-092015);; 洪湖水污染防治专项资金项目
  • 语种:中文;
  • 页:157-162+167
  • 页数:7
  • CN:41-1085/P
  • ISSN:1003-2363
  • 分类号:S157
摘要
汉江流域是南水北调中线工程的水源地,其水土保持能力对维持生态环境安全与区域可持续发展具有重要意义。基于GIS技术,运用水土流失方程,估算了汉江流域3个时期的水土保持量,探讨了丹江口大坝上、下游水土保持量的时空变化特征。2001—2017年汉江流域水土保持量总体呈增长趋势,累计增加了392 649. 99 t/km~2,2017年水土保持量是2001年的2. 15倍。从分区看,2017年上、下游的水土保持量分别是2001年的2. 16倍和2. 09倍。汉江流域的水土保持量总体呈现山区高(增加),平原低(减少)的分布格局。水土保持量的低等级面积占比较大,总体处于低等级状态;低、较低、中等级的面积呈减少趋势;高、较高等级的面积呈增加趋势,除少量高等级区域的水土保持量向低等级转移外,其他等级均为低向高转移,近17年来,汉江流域水土保持趋于好转。
        Based on the GIS technology,the study uses the soil erosion equation to estimate the water and soil conservation in the Hanjiang River basin during three periods,and discusses the temporal and spatial variation characteristics of the water and soil conservation on the upper and lower reaches of the Danjiangkou dam. The results show that the soil and water conservation in the Hanjiang River basin in 2001—2017 showed an overall growth trend,with an increase of 392 649. 99 t/km~2,and the soil and water conservation in 2017 was 2. 15 times that of 2001. From the perspective of the district,the amount of water and soil conservation in the upstream and downstream in 2017 was 2. 16 times and 2. 09 times that of 2001 respectively. The water and soil conservation in the Hanjiang River basin generally shows a high( increased) in mountainous area and a low( decreased) distribution pattern in the plain. The low-grade area of soil and water conservation accounts for a relatively large area,and the overall level is at a low level; the areas of low and medium grades showed a decreasing trend; the areas of high and high grades showed an increasing trend. Except for a small number of high-grade areas,the water and soil reserves are transferred to low levels,and other grades are low to high. In the past 17 years,the soil and water conservation in the Hanjiang River basin has improved.
引文
[1]赵晓丽,张增祥,谭文彬,等.西部地区土壤侵蚀特征及其危害分析[J].水土保持通报,2002,22(3):15-19.
    [2]饶恩明,肖燚,欧阳志云,等.海南岛生态系统土壤保持功能空间特征及影响因素[J].生态学报,2013,33(3):746-755.
    [3]魏伟,石培基,周俊菊,等.基于GIS的石羊河流域可持续发展能力评估[J].地域研究与开发,2014,33(6):170-174.
    [4]彭文喜,孙虎,刘慧慧,等.我国省际旅游业可持续发展能力的空间分异研究[J].地域研究与开发,2011,30(2):113-118.
    [5] WISCHMEIER W H,SMITH D D. Rainfall Energy and Its Relationship to Soil Loss[J]. Transactions American Geophysical Union,1958,39(2):285-291.
    [6] FISTIKOGLU O,HARMANCIOGLU N B. Integration of GIS with USLE in Assessment of Soil Erosion[J]. Water Resources Management,2002,16(6):447-467.
    [7] LAFFEN J M,LWONARD J L,FOSTER G R. Weep A New Generation of Erosion Prediction Technology[J].Journal of Soil and Water Conservation,1991,46(1):34-38.
    [8] MORGAN R P C,QUINTON J N,SMITH R E,et al. The European Soil Erosion Model(EUROSEM):A Dynamic Approach for Predicting Sediment Transport from Fields and Small Catchments[J]. Earth Surface Processes and Landforms,1998,23(6):527-544.
    [9] DE ROO A P J,WESSELING C G,RITSMA C J. Lisem:A Singleevent,Physically Based Hydrological and Soil Erosion Model for Drainage Basins.Ⅰ:Theory,Input and Output[J]. Hydrological Processes,1996,10(8):1107-1117.
    [10]蒋春丽,张丽娟,张宏文,等.基于RUSLE模型的黑龙江省2000—2010年土壤保持量评价[J].中国生态农业学报,2015,23(5):642-649.
    [11]刘宝元,毕小刚,符素华,等.北京土壤流失方程[M].北京:科学出版社,2010:7-13.
    [12]王略,屈创,赵国栋.基于中国土壤流失方程模型的区域土壤侵蚀定量评价[J].水土保持通报,2018,38(1):122-125.
    [13]李翠漫,卢远,刘斌涛,等.广西西江流域土壤侵蚀估算及特征分析[J].水土保持研究,2018,25(2):34-39.
    [14]朱九龙.河南义马煤矿矿区生态系统服务价值动态演化过程分析[J].地域研究与开发,2016,35(2):145-149.
    [15]段汀龙.城市湿地生态服务功能探析[J].地域研究与开发,2014,33(1):117-121.
    [16]郭玲霞,赵微,王丽娜,等.基于土地整治模式的区域生态服务价值变化研究——以湖北省为例[J].地域研究与开发,2012,31(6):145-150.
    [17]杨文艳,周忠学.西安都市圈农业生态系统水土保持价值估算[J].应用生态学报,2014,25(12):3637-3644.
    [18]杨波,王全九,董莉丽.榆林市还林还草后土壤保持功能和经济价值评价[J].干旱区研究,2017,34(6):1313-1322.
    [19]盛莉,金艳,黄敬峰.中国水土保持生态服务功能价值估算及其空间分布[J].自然资源学报,2010(7):1105-1113.
    [20]张静,曹生奎,曹广超,等.青海湖流域土壤保持量动态变化[J].水土保持通报,2016,36(2):326-331.
    [21]蒋欣阳,贾志斌,张雪峰,等.内蒙古锡林郭勒盟景观尺度土壤保持功能的空间分布研究[J].地球环境学报,2018,9(1):64-78.
    [22] ZENG Z Y,CAO J Z,GU Z Y,et al. Dynamic Monitoring of Plant Cover and Soil Erosion Using Remote Sensing,Mathematical Modeling,Computer Simulation and GIS Techniques[J]. American Journal of Plant Sciences,2013,4:1466-1493.
    [23] HOMER C G,ALDRIDGE C L,MEYER D K,et al. Multiscale Remote Sensing Sagebrush Characterization with Regression Trees Over Wyoming,USA:Laying A Foundation for Monitoring[J]. International Journal of Applied Earth Obseration and Geoinformation,2012,14(1):233-244.
    [24]朱明勇,谭淑端,张全发.近60年汉江流域侵蚀性降雨的时空变化特征[J].生态环境学报,2013,22(9):1544-1549.
    [25]李亦秋,冯仲科,韩烈保.丹江口库区及上游生态系统土壤保持效益价值评估[J].中国人口·资源与环境,2010,20(5):64-69.
    [26]王纪伟,孙光,罗遵兰,等.汉江上游森林生态系统土壤保持服务功能研究[J].环境科学与技术,2015,38(12):291-297.
    [27]李小燕,王志杰.汉江源土壤流失状况及生态效益测评[J].长江流域资源与环境,2016(4):671-678.
    [28]薛宝琪,刘长运,范红艳.目的地居民旅游感知态度研究——以丹江口水库南部东岸及南岸为例[J].地域研究与开发,2011,30(1):99-103.
    [29] WISCHMEIER W H,SMITH D D. Predicting Rainfall Erosion Losses-A Guide to Consrevation Planning[M].USDA Agricultural Hand Book,Washington,D. C.:USDA,1978:537.
    [30]孙文义,邵全琴,刘纪远.黄土高原不同生态系统水土保持服务功能评价[J].自然资源学报,2014,29(3):365-376.
    [31]顾璟冉,张兴奇,顾礼彬,等.黔西高原地区降雨侵蚀力的简易算法[J].水土保持通报,2016,36(2):204-208.
    [32]任洪玉,刘惠英.三峡库区大宁河流域降雨侵蚀力的时空变化[J].水土保持通报,2016,36(3):1-7.
    [33]伍育鹏,谢云,章文波.国内外降雨侵蚀力简易计算方法的比较[J].水土保持学报,2001,15(3):31-34.
    [34] YU B,ROSEWELL C J. An Assessment of A Daily Rainfall Erosivity Model for New South Wales[J]. Australian Journal of Soil Research,1996,34(1):139-152.
    [35]沈虹,张万顺,彭虹.汉江中下游土壤侵蚀及颗粒态非点源磷负荷研究[J].水土保持研究,2010,17(5):1-6.
    [36]梁音,史学正.长江以南东部丘陵山区土壤可蚀性K值研究[J].水土保持研究,1999,6(2):48-53.
    [37]岑奕,丁文峰,张平仓.华中地区土壤可蚀性因子研究[J].长江科学院院报,2011,28(10):65-68,74.
    [38] DESMET P J. A GIS Procedure for Automatielly Calculting the USLELS Factor on Topographieally Complex Landseape Units[J]. Journal of Soil and Water Conservation,1996,51(5):427-433.
    [39] ALKHARABSHEH M M,ALEXANDRIDIS T K,BILAS G,et al. Impact of Land Cover Change on Soil Erosion Hazard in Northern Jordan Using Remote Sensing and GIS[J]. Procedia Environmental,2013,19(12),912-921.
    [40] LUFAFA A,TENYWA M M,ISABIRYE M. Prediction of Soil Erosion in A Lake Victoria Basin Catchment Using A GIS-based Universal Soil Loss Mode[J]. Agricultural Systems,2003,76(3):883-894.
    [41]张乐群.丹江口坝区扩建工程水土保持建设与效果分析[J].人民长江,2015,46(6):87-89.
    [42] SARAH M W,PAUL V D. The Impact of Land Use on Soil Carbon in Miombo Woodlands of Malawi[J]. Forest Ecology and Management,2004,203(1/2/3):345-360.
    [43]胡砚霞,黄进良,王立辉.丹江口库区1990—2010年土地利用时空动态变化研究[J].地域研究与开发,2013,32(3):133-137.
    [44]李桂静,崔明,周金星,等.南方红壤区林下土壤侵蚀控制措施水土保持效益研究[J].水土保持学报,2014,28(5):1-5.
    [45]章影,廖畅,姜庆虎,等.丹江口库区土壤侵蚀对土地利用变化的响应[J].水土保持通报,2017,37(1):104-111.
    [46]李晓玲.南水北调中线陕西水源区水土流失及治理对策[J].水土保持通报,2008,28(6):158-161.
    [47]陈奇伯,王克勤,齐实,等.黄土丘陵区坡耕地水土流失与土地生产力的关系[J].生态学报,2003,3(8):1463-1469.
    [48]钟原,陈菊红,马安妮,等.南水北调陕西水源区水土保持效益评价[J].水土保持研究,2016,23(3):119-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700