用户名: 密码: 验证码:
椭圆小球藻对水体汞光还原的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Chlorella ellipticus on the photoreduction of Hg~(2+) in water body
  • 作者:莫雅斐 ; 金林 ; 孙荣国 ; 王丽萍
  • 英文作者:MO Yafei;JIN Lin;SUN Rongguo;WANG Liping;School of Chemistry and Material,Guizhou Normal University;State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences;
  • 关键词:椭圆小球藻 ; ; 光还原 ; 波长 ; 紫外光
  • 英文关键词:Chlorella ellipticus;;mercury;;photoreduction;;wavelength;;ultraviolet light
  • 中文刊名:环境化学
  • 英文刊名:Environmental Chemistry
  • 机构:贵州师范大学化学与材料科学学院;中国科学院地球化学研究所环境地球化学国家重点实验室;
  • 出版日期:2018-12-18 14:43
  • 出版单位:环境化学
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金(41563012、21767007);; 中国博士后科学基金(2017M613005);; 贵州省科技厅联合基金(黔科合LH字[2017]7334);; 贵州省教育厅青年科技人才成长项目(黔教合KY[2016]135);; 贵州师范大学博士科研启动基金(2014);贵州师范大学“省级大学生创新创业训练计划”项目(201710663071)资助~~
  • 语种:中文;
  • 页:124-132
  • 页数:9
  • CN:11-1844/X
  • ISSN:0254-6108
  • 分类号:X52
摘要
为明确椭圆小球藻对水体中Hg~(~(2+))光还原反应的影响,采用室内模拟实验,以不同波长紫外灯及氙灯(可见光)为光源,探讨不同丰度活、死椭圆小球藻在各光照条件下对Hg~(~(2+))光还原反应的影响及动力学特征.结果表明,当藻丰度为1×106cells·m L~(-1)时,在可见光照射下,活藻、死藻处理Hg0的释放量分别为3.733 ng、3.749 ng,Hg~(~(2+))的还原率分别为18.66%、18.75%;在紫外光(UV)照射下,活藻、死藻处理Hg0的释放量最高为2.312 ng、2.373 ng,Hg~(~(2+))的还原率最高为11.56%、11.86%.在可见光、UVA、UVB和黑暗条件下,当藻丰度为0 cells·m L~(-1)时,Hg~(~(2+))的还原率分别为21.45%、22.86%、26.75%、20.41%;随藻丰度的增加,Hg~(~(2+))的还原率逐渐下降;当藻丰度为10×106cells·m L~(-1)时,活藻处理Hg~(~(2+))的还原率分别降至17.70%、10.28%、9.962%、9.774%,死藻处理的降至18.15%、10.83%、10.77%、10.39%.可见,椭圆小球藻对Hg~(~(2+))的光还原反应起抑制作用,藻丰度越高抑制作用越强烈;可见光对含藻处理Hg~(~(2+))的光还原起主要作用,其次为紫外光.动力学研究表明,UV照射下椭圆小球藻对Hg~(~(2+))光还原反应可用Langmuir-Hinshelwood模型进行描述,反应速率常数k为(0. 6893—1.473)×10-4ng·L~(-1)·min-1,Langmuir吸附系数KL为(1.063—1.080)×10-2L·ng~(-1).
        Laboratory simulation experiments were conducted to investigate the effects of Chlorella elliptica on the photoreduction of Hg~(2+)in water body. Different wavelengths of ultraviolet( UV) lamp and xenon lamp( visible light) were used as light sources. Chemical kinetic characteristics were analyzed for the experiments using different concentrations of living/dead Chlorella elliptica and under various light conditions. The results indicated that when the abundance of algae was 1×106 cells·m L~(-1),the release of Hg0 from living and dead algae treatment were 3.733 ng and 3.749 ng,respectively.The reduction rates of Hg~(2+)were 18. 66% and 18. 75% for living and dead algae treatment under visible light irradiation,respectively. Under UV light irradiation,the flux of Hg0 from living and dead algae treatment were the highest at 2. 312 ng and 2. 373 ng respectively,and the highest reduction rates of Hg~(2+)were 11. 56% and 11. 86%,respectively. When the abundance of algae increased from 0 cells·m L~(-1) to 10 × 106 cells·m L~(-1),under the visible light,UVA,UVB and dark conditions,the reduction rates of Hg~(2+)contained with living algae decreased from 21.45%,22.86%,26.75%,and 20. 41% to 17. 70%,10. 28%,9. 962% and 9. 774%,respectively. For the dead treatments,the reduction rates decreased from 21. 45%,22. 86%,26. 75%,and 20. 41% to18.15%,10.83%,10.77%,and 10.39%,respectively. Therefore,Chlorella elliptica inhibited the photoreduction of Hg~(2+)and the inhibition was increased with the increase of the abundance of algae.Visible light played a major role in the Hg~(2+)photoreduction contained with algae,followed by UV light. The kinetics of photoreduction of Hg~(2+)by Chlorella elliptica under UV irradiation can be described by the Langmuir-Hinshelwood model. The rate constant k and Langmuir adsorption coefficient KLwere calculated to be( 0.6893—1.473) × 10-4 ng·L~(-1)·min-1 and( 1.063—1. 080) ×10-2 L·ng~(-1),respectively.
引文
[1] O'DRISCOLL N J,STEPHEN B,SICILIANO S D,et al. Continuous analysis of dissolved gaseous mercury(DGM)and mercury flux intwo freshwater lakes in Kejimkujik Park,Nova Scotia:Evaluating mercury flux models with quantitative data[J]. Environmental Science&Technology,2003,37(10):2226-2235.
    [2] O'DRISCOLL N J,SICILIANO S D,LEAN D R. Continuous analysis of dissolved gaseous mercury in freshwater lakes[J]. Science of theTotal Environment,2003,304(1-3):285-294.
    [3]阴永光,李雁宾,蔡勇,等.汞的环境光化学[J].环境化学,2011,30(1):84-91.YIN Y G,LI Y B,CAI Y,et al. Environmental photo-chemistry of mercury[J]. Environmental Chemistry,2011,30(1):84-91(inChinese).
    [4] SMITH-DOWNEY N V,SUNDERL E M,JACOB D J. Anthropogenic impacts on global storage and emissions of mercury from terrestrialsoils:Insights from a new global model[J]. Journal of Geophysical Research Atmospheres,2010,115:1-11.
    [5]冯新斌.水库汞的生物地球化学循环研究进展[J].环保科技,2011,17(1):1-5.FENG X B. A review on mercury biogeochemical cycling in reservoirs[J]. Environmental Protection and Technology,2011,17(1):1-5(in Chinese).
    [6] MASON R P,FITZGERALD W F,MOREL F M M. The biogeochemical cycling of elemental mercury:Anthropogenic influences[J].Geochimica Et Cosmochimica Acta,1994,58(15):3191-3198.
    [7] MASON R P,SHEU G-R. Role of the ocean in the global mercury cycle[J]. Global Biogeochemical Cycles,2002,16(4):1093-2010.
    [8] SELIN N E,JACOB D J,YANTOSCA R M,et al. Global 3-D land-ocean-atmosphere model for mercury:Present-day versus preindustrialcycles and anthropogenic enrichment factors for deposition[J]. Global Biogeochemical Cycles,2008,22(3):1-13.
    [9] FU X W,ZHANG H,WANG X,et al. Observations of atmospheric mercury in China:A critical review[J]. Atmospheric Chemistry&Physics Discussions,2015,15(16):11925-11983.
    [10] ORIHEL D M,PATERSON M J,BLANCHFIELD P J,et al. Experimental evidence of a linear relationship between inorganic mercuryloading and methylmercury accumulation by aquatic biota[J]. Environmental Science&Technology,2007,41(14):4952-4958.
    [11] AMYOT M,MCQUEEN D J,MIERLE G,et al. Sunlight-induced formation of dissolved gaseous mercury in lake waters[J]. EnvironmentalScience&Technology,1994,28(13):2366-2371.
    [12] LALONDE J D,AMYOT M,KRAEPIEL A M,et al. Photooxidation of Hg(0)in artificial and natural waters[J]. Environmental Science&Technology,2001,35(7):1367-1372.
    [13] ZHANG H,LINDBERG S E. Sunlight and iron(III)-induced photochemical production of dissolved gaseous mercury in freshwater[J].Environmental Science&Technology,2001,35(5):928-935.
    [14] MALONEY K O,MORRIS D P,MOSES C O,et al. The role of iron and dissolved organic carbon in the absorption of ultraviolet radiationin Humic Lake water[J]. Biogeochemistry,2005,75(3):393-407.
    [15] O'DRISCOLL N J,SICILIANO S D,LEAN D R S,et al. Gross photoreduction kinetics of mercury in temperate freshwater lakes andrivers:Application to a general model of DGM dynamics[J]. Environmental Science&Technology,2006,40(3):837-843.
    [16] O'DRISCOLL N J,SICILIANO S D,PEAK D,et al. The influence of forestry activity on the structure of dissolved organic matter in lakes:implications for mercury photoreactions[J]. Science of the Total Environment,2006,366(2-3):880-893.
    [17] SI L,ARIYA P A. Reduction of oxidized mercury species by dicarboxylic acids(C2-C4):Kinetic and product studies[J]. EnvironmentalScience&Technology,2008,42(14):5150-5155.
    [18] ZHANG Y T,SUN R G,MA M,et al. Study of inhibition mechanism of NO3-on photoreduction of Hg(II)in artificial water[J].Chemosphere,2012,87(2):171-176.
    [19] SUN R G,WANG D Y,ZHANG Y T,et al. Photo-degradation of monomethylmercury in the presence of chloride ion[J]. Chemosphere,2013,91(11):1471-1476.
    [20] QURESHI A,O'DRISCOLL N J,MACLEOD M,et al. Photoreactions of mercury in surface ocean water:gross reaction kinetics andpossible pathways[J]. Environmental Science&Technology,2010,44(2):644-649.
    [21]李希嘉,钟紫旋,孙荣国,等.不同波长和强度光照对水体汞还原的影响[J].环境科学,2014,35(5):1788-1792.LI X J,ZHONG Z X,SUN R G,et al. Influence of light wavelength and intensity on the reduction of divalent mercury in aquatic system[J]. Environmental Science,2014,35(5):1788-1792(in Chinese).
    [22] BEN-BASSAT D,MAYER A M. Light-induced Hg volatilization and O2evolution in Chlorella and the effect of DCMU and methylamine[J]. Physiologia Plantarum,1978,42(1):33-38.
    [23] DENG L,WU F,DENG N,et al. Photoreduction of mercury(II)in the presence of algae,anabaena cylindrical[J]. Journal ofPhotochemistry&Photobiology B Biology,2008,91(2-3):117-124.
    [24] MORELLI E,FERRARA R,BELLINI B,et al. Changes in the non-protein thiol pool and production of dissolved gaseous mercury in themarine diatom Thalassiosira weissflogii under mercury exposure[J]. Science of the Total Environment,2009,408(2):286-293.
    [25] GUO L. Ecology-doing battle with the green monster of Taihu Lake[J]. Science,2007,317(5842):1166-1166.
    [26]陈灿,潘亚男,王欣,等.凤眼莲生物炭对稻田土壤肥力的影响[J].环境化学,2017,36(4):907-914.CHEN C,PAN Y N,WANG X,et al. Influence of water hyacinth biochar on retention of nutrition in paddy soils[J]. EnvironmentalChemistry,2017,36(4):907-914(in Chinese).
    [27] USEPA(U. S. Environmental Protection Agency). Method 1631,Revision E:Mercury in water by oxidation,purge and trap,and coldvapor atomic fluorescence spectrometry,EPA-821-R-02-019[M]. Washington,DC:U. S. EPA,2002:2-38.
    [28]鲁新宇,刘建兰,冯鸣.物理化学[M].北京:化学工业出版社,2008:214-262.LU X Y,LIU J L,FENG M. Physical chemistry[M]. Beijing:Chemical Industry Press,2008:214-262(in Chinese).
    [29]孙荣国,毛雯,马明,等.水体中甲基汞光化学降解特征研究[J].环境科学,2012,33(12):4329-4334.SUN R G,MAO W,MA M,et al. Characteristics of monomethylmercury photodegradation in water body[J]. Environmental Science,2012,33(12):4329-4334(in Chinese).
    [30]孙荣国.三峡水库水体甲基汞光化学降解特征及其作用机制与影响因素[D].重庆:西南大学,2014.SUN R G. Mechanisms and influencing factors of methylmercury photodegradation in the water body of Three Gorges Reservoir,China[D].Chongqing:Southwest University,2014(in Chinese).
    [31] SUN L,LU B,YUAN D,et al. Effect on the photo-production of dissolved gaseous mercury in post-desulfurized seawater discharged from acoal-fired power plant[J]. Water Air&Soil Pollution,2015,226(4):118-128.
    [32] GARCIA E,AMYOT M,ARIYA P A. Relationship between DOC photochemistry and mercury redox transformations in temperate lakes andwetlands[J]. Geochimica Et Cosmochimica Acta,2005,69(8):1917-1924.
    [33] VETTE A F. Photochemical influences on the air-water exchange of mercury[D]. Ann Arbor:University of Michigan,1998.
    [34] ZHANG H. Photochemical Redox Reactions of Mercury[M]. Berlin,Heidelberg:Springer,2006:37-79.
    [35] LALONDE J D,AMYOT M,DOYON M R,et al. Photo-induced Hg(II)reduction in snow from the remote and temperate ExperimentalLakes Area(Ontario,Canada)[J]. Journal of Geophysical Research Atmospheres,2003,108(D6):4200-4207.
    [36] CHOI H D,HOLSEN T M. Gaseous mercury emissions from unsterilized and sterilized soils:The effect of temperature and UV radiation[J]. Environmental Pollution,2009,157(5):1673-1678.
    [37] DAUGHNEY C J,SICILIANO S D,RENCZ A N,et al. Hg(II)adsorption by bacteria:A surface complexation model and its applicationto shallow acidic lakes and wetlands in Kejimkujik National Park,Nova Scotia,Canada[J]. Environmental Science&Technology,2002,36(7):1546-1553.
    [38]胡琴,曹艳,张喆倩,等.不同微藻吸附重金属离子Cd2+的实验研究[J].上海环境科学,2017,36(4):179-184.HU Q,CAO Y,ZHANG Z Q,et al. An experimental study on the adsorption of heavy metal ion Cd(II)by different microalgae[J].Shanghai Environmental Sciences,2017(4):179-184(in Chinese).
    [39] HAMMUD H H,MANSOUR E M E,SHAALAN S,et al. Adsorption of mercuric ion by marine algae Enteromorpha[C]. India:ResearchIndia Publications,2006:87-102.
    [40] DIGUEZ M C,QUEIMALIOS C P,GUEVARA S R,et al. Influence of dissolved organic matter character on mercury incorporation byplanktonic organisms:an experimental study using oligotrophic water from Patagonian lakes[J]. Journal of Environmental Sciences,2013,25(10):1980-1991.
    [41]支田田,程丽华,徐新华,等.藻类去除水体中重金属的机理及应用[J].化学进展,2011,23(8):1782-1794.ZHI T T,CHENG L H,XU X H,et al. Advances on heavy metals removal from aqueous solution by algae[J]. Progress in Chemistry,2011(8):1782-1794(in Chinese).
    [42]秦捷,赵文,张鹏.环境汞污染对藻类的毒性效应及其影响因素[J].生物学杂志,2011,28(3):74-76.QIN J,ZHAO W,ZHANG P. The environment mercury pollution toxicity effect to the alga and their influencing factors[J]. Journal ofBiology,2011,28(3):74-76(in Chinese).
    [43]刘军晖,麻冰涓,毛宇翔,等.微藻对无机汞和甲基汞的吸附和吸收特性[J].环境化学,2017,36(7):1602-1613.LIU J H,MA B J,MAO Y X,et al.Adsorption and absorption characteristics of inorganic mercury and methylmercury by microalgae[J].Environmental Chemistry,2017,36(7):1602-1613(in Chinese).
    [44]吴海锁,张洪玲,张爱茜,等.小球藻吸附重金属离子的试验研究[J].环境化学,2004,23(2):173-177.WU H S,ZHANG H L,ZHANG A Q,et al. Biosorption of heavy metals by Chlorella[J]. Environmental Chemistry,2004,23(2):173-177(in Chinese).
    [45]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003:210-217.DENG N S,WU F. Environmental photochemistry[M]. Beijing:Chemical Industry Press,2003:210-217(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700