用户名: 密码: 验证码:
西藏色那铜金矿床侵入岩元素地球化学特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Element Geochemistry of Intrusive Rocks in Sena Copper Gold Deposit, Tibet
  • 作者:何阳阳 ; 温春齐 ; 刘显凡
  • 英文作者:HE Yangyang;WEN Chunqi;LIU Xianfan;School of Geography and Resource Science, Neijiang Normal University;Geosciences College of Chengdu University of Technology;
  • 关键词:闪长岩 ; 花岗闪长岩 ; 色那铜金矿床 ; 西藏 ; 地球化学特征
  • 英文关键词:diorite;;granodiorite;;the Sena copper gold deposit;;Tibet
  • 中文刊名:新疆大学学报(自然科学版)
  • 英文刊名:Journal of Xinjiang University(Natural Science Edition)
  • 机构:内江师范学院地理与资源科学学院;成都理工大学地球科学学院;
  • 出版日期:2019-02-15
  • 出版单位:新疆大学学报(自然科学版)
  • 年:2019
  • 期:01
  • 基金:国土资源部公益性行业科研专项项目(201011013);; 四川省教育厅科研项目(17ZB0223)
  • 语种:中文;
  • 页:102-109
  • 页数:8
  • CN:65-1094/N
  • ISSN:1000-2839
  • 分类号:P618.41;P618.51
摘要
多龙矿集区是中国第一个世界级超级铜矿矿集区,探获的铜金属量已超过2 000万吨;色那铜金矿床是继多不杂、波龙、铁格隆南、拿若等超大型矿床后,多龙矿集区内发现的又一具有大型前景的矿床.探讨色那铜金矿床侵入岩的元素地球化学特征,分析成岩成矿构造背景,有助于其矿床成因及成矿机制的认识.选择矿区内相关侵入岩样品,测试其化学成分.研究表明,色那铜金矿区分布着两套侵入岩,一套为中钾强钙碱性花岗闪长岩类,相对富集Cs、Ba、La、Ce、Sr、Zr等元素,相对亏损Rb、Ta、Nb、Hf等元素;另一套为高钾中钙碱性闪长岩类,相对富集Cs、Rb、Th、U、La、Sr、Sm等元素,相对亏损Ba、Ta、Nb、Hf等元素.由闪长岩类→花岗闪长岩类,样品的δCe表现为由弱负异常→弱正异常,这是因为地幔底辟作用引发地壳部分重熔形成长英质岩浆的过程中,逐步消弱了结晶分异导致的负铈异常,并随其比例和强度增大而形成正铈异常.色那铜金矿区侵入岩在成岩成矿过程中,具熔浆性质的幔源含矿流体与地壳深部重熔岩浆是两个性质不同且相互独立的物质体系;二者混合后共同运移并随岩浆结晶成岩过程和环境物化条件的变化而参与成矿.
        The Duolong ore concentration area is the first world-class super-copper ore concentration area in China, and the amount of copper metals recovered has exceeded 20 million tons. The Sena copper-gold deposit is another large prospecting deposit discovered in the Duolong ore concentration area after Duobuza, Bolong,Tiegelongnan, Naruo and other super-large deposits. To study the element geochemical characteristics of intrusive rocks in the Sena copper-gold deposit and to analyze the diagenetic and metallogenic tectonic background will be helpful to understand the genesis and metallogenic mechanism of the deposit. Samples of related intrusive rocks in the mining area were selected for testing their chemical composition. The study shows that two sets of intrusive rocks are distributed in the Sena copper gold mine, one is medium potassium and strong calcium alkaline granodiorite, which is relatively rich in elements such as Cs, Ba, La, Ce, Sr,Zr and other elements, such as Rb, Ta, Nb and Hf, and the other elements of high potassium and alkaline diorite. The relative loss of Ba, Ta, Nb, Hf and other elements. From the diorite to granodiorite, the δCe of the sample is characterized by weak negative anomaly and weak positive anomaly, which is the genetic marker of metasomatism of the ore bearing mantle fluid accompanied by magmatic crystallization diagenesis,which weakens or counteracts the negative cerium anomalies formed by the inhomogeneous mixed dyeing and metasomatism and counteracts the crystallization differentiation, and is proportional and strong. The degree of degree increases and the abnormal cerium is formed. In the process of diagenesis and mineralization of the Sena copper gold mining area, the mantle derived ore fluid and the deep remelting magma of the crust are two different and independent material systems with different properties. The two groups migrate together and participate in the mineralization with the crystallization process of magma crystallization and the alteration of the environmental physical and chemical conditions.
引文
[1]温春齐,多吉.矿床研究方法[M].成都:四川出版集团,四川科学技术出版社,2009.Wen C Q, Duo J. Research Methods of Mineral Deposit[M]. Chengdu:Sichuan Science and Technology Press, 2009.
    [2]韦少港,宋扬,唐菊兴,等.西藏色那铜(金)矿床石英闪长玢岩年代学、地球化学与岩石成因[J].中国地质,2016,43(6):1894-1912.Wei S G, Song Y, Tang J X, et al. Geochronology, geochemistry and petrogenesis of quartz diorite porphyrite from the Sena copper(gold)deposit, Tibet[J]. Geology in China, 2016, 43(6):1894-1912.
    [3]段志明,李光明,张晖,等.色那金矿石英二长闪长岩锆石U-Pb年龄与地球化学特征及其对成矿背景的约束[J].吉林大学学报(地球科学版),2013,43(6):1864-1877.Duan Z M, Li G M, Zhang H, et al. Zircon U-Pb age and geochemical characteristics of the Quartz monzobiorite and metallogenic background of the Sena gold deposit in Duolong metallogenic Concentrated area, Tibet[J]. Journal of Jilin University(Earth Science Edition), 2013,43(6):1864-1877.
    [4]高轲,唐菊兴,方向,等.西藏多龙矿集区色那铜金矿地质特征、侵入岩地球化学特征及其地质意义[J].矿物学报,2016,36(2):199-207.Gao K, Tang J X, Fang X, et al. Geological and Geochemical Characteristics and Significance of the Sena Cu-Au Deposit from Duolong Ore-concentration Area, Tibet, China[J]. Acta mineralogical sinica, 2016,36(2):199-207.
    [5] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4):215-224.
    [6] Rollinson H R. Using Geochemical Data:Evaluation, Presentation, Interpretation[M]. New York:Longman Scientific Technical, 1993.
    [7] Miyashiro A. Volcanic rock series and tectonic setting[J].Earth Planet.Sci Lett,1974,83:249-281.
    [8] Rittmann A. Stable mineral assemblages of igneous rocks:a method of calculation[M].Berlin:Springer-Verlag,1973.
    [9] Cullers R L, Graf J L. Rare earth elements in igneous rocks of the continetal crust:Interm ediate and silicic rocks ore petrogenesis, In Henderson P Rare earth element geochemistry[M]. Elsevier Sicience Publication, 1984,275-316.
    [10]李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992.Li C N. Trace Elements Petrology of Igneous Rocks[M].Wuhan:China University of Geosciences Press,1992.
    [11] Boynton W V. Geochemistry of the rare earth elements:meteoritestudies[C].Henderson P. Rare earth element geochemistry.Amsterdam:Elsevier, 1984,63-114.
    [12] Liu X F, Li C H, Lu Q X, et al. The Genesis Mechanism of the Mantle Fluid Action and Evolution in the OreForming Process:A Case Study of the Laowangzhai Gold Deposit in Yunnan, China[J].Acta Geologica Sinica(English Edition),2012,86(3):608-618.
    [13]李春辉,刘显凡,赵甫峰,等.金顶超大型铅锌矿床中的地幔流体现实踪迹与壳幔混染叠加成矿机制[J].地学前缘,2011,18(1):194-206.Li C H, Liu X F, Zhao F F, et al. Actual traces of mantle fluid of Jinding super-large Pb-Zn deposit and the mechanism of crust-mantle overlapping mineralization[J].Earth Science Frontiers, 2011,18(1),194-206.
    [14]邓碧平,刘显凡,朱建军,等.壳幔混染成矿机制的稀有气体同位素及硅同位素证据[J].吉林大学学报(地球科学版),2014,44(6):1856-1868.Deng B P, Liu X F, Zhu J J, et al. Noble Gas Isotope and Silicon Isotope Evidences of Crust Mantle Mixing Ore-FormationMechanism:Examplified by the Alkali-Rich Porphyry Polymetallic Deposits in Western Yunnan,China[J].Journal of Jilin University(Earth Science Edition), 2014,44(6),1856-1868.
    [15] Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle compositions and processes.In:Saunders A D, ed. Magmatism in the Oceanic Basins[M]. Geological Society, London:Special Publication, 1992, 313-345.
    [16]赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学,2007,31(1):92-103.Zhao Z H. How to use the trace element diagrams to discriminate tectonic settings[J]. Geotectonica Et Metallogenia,2007,31(1):92-103.
    [17] Papu D M, Philip M P. Tectonic discrimination of granitoids[J].Geological Society of America Bulletin, 1989,101(5):635-643.
    [18] Pearce A J, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984,25:956-983.
    [19]何阳阳,温春齐,刘显凡.西藏多不杂铜矿床硫铅同位素地球化学示踪[J].岩石矿物学杂志,2016,35(5):855-862.He Y Y, Wen C Q, Liu X F. Sulfur and Lead Isotope Geochemical Tracing of the Duobuza Copper Deposits, Tibet[J]. Acta Petrologica ET Mineralogica, 2016,35(5):855-862.
    [20]何阳阳,温春齐,刘显凡,等.西藏多不杂铜矿床成矿流体来源探讨:来自氦氩碳氢氧同位素的证据[J].矿物学报,2017,37(1):114-120.He Y Y, Wen C Q, Liu X F, et al. Discussion on the Source of Ore-Forming Fluids in Duobuza Deposit, Tibet, China:From Helium-Argon and Carbon-Hydrogen-Oxygen Isotope Evidence[J]. Acta mineralogical sinica,2017,37(1):114-120.
    [21]何阳阳,温春齐,刘显凡.西藏多不杂铜矿床脉石矿物稀土元素地球化学示踪[J].有色金属工程,2018,8(3):115-119.He Y Y, Wen C Q, Liu X F. REE Geochemical Tracer in Gangue Mineral of the Duobuza Copper Deposit, Tibet[J].Nonferrous Metals Engineering,2018,8(3):115-119.
    [22] Clemens J D. S-type granitic magmas-petrogenetic issues, models and evidence[J]. Earth Science Review,2003,61:1-18.
    [23]刘显凡,蔡永文,卢秋霞,等.滇西地区富碱斑岩中地幔流体作用踪迹及其成矿作用意义[J].地学前缘,2010,17(1):114-136.Liu X F, Cai Y W, Lu Q X, et al. Actual traces of mantle fluid from alkali-rich porphyries in western Yunnan,and associated implications to metallogenesis[J].Earth Science Frontiers,2010,17(1),114-136.
    [24]刘显凡,楚亚婷,卢秋霞,等.云南老王寨金矿的深部地质过程-来自显微岩相学和元素地球化学的证据[J].吉林大学学报(地球科学版),2012,42(4):1026-1038.Liu X F, Chu Y T, Lu Q X, et al. Deep Geological Processes on Laowangzhai Gold Deposit in Yunnan:Evidence from Petrography and Element Geochemistry[J].Journal of Jilin University(Earth Science Edition), 2012,42(4),1026-1038.
    [25]杜德道,曲晓明,王根厚,等.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J].岩石学报,2011,27(7):1993-2002.Du D D, Qu X M, Wang G H, et al. Bidirectional subduction of the Middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture, Tibet:Evidence from zircon U-Pb LAICPMS dating and petrogeochemistry of arc granites[J].Acta Petrologica Sinica, 2011,27(7):1993-2002.
    [26]罗照华,卢欣祥,郭少丰,等.透岩浆流体成矿体系[J].岩石学报,2008,24(12):2669-2678.Luo Z H, Lu X X, Guo S F, et al. Metallogenic systems on the transmagmatic fluid theory[J]. Acta Petrologica Sinica,2008,24(12),2669-2678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700