用户名: 密码: 验证码:
纳米纤维素/还原氧化石墨烯透明导电薄膜的制备及表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication and characteristics of cellulose nanofibrils/reduced graphene oxide transparent conductive films
  • 作者:吴波 ; 陈梦唯 ; 吴永亮 ; 陈志鹏 ; 徐朝晖 ; 芦梦婷 ; 杨阳 ; 何文
  • 英文作者:WU Bo;CHEN Mengwei;WU Yongliang;CHEN Zhipeng;XU Zhaohui;LU Mengting;YANG Yang;HE Wen;College of Materials Science and Engineering,Nanjing Forestry University;
  • 关键词:纳米纤维素 ; 氧化石墨烯 ; TEMPO氧化 ; 层层自组装法 ; 抗坏血酸
  • 英文关键词:cellulose nanofibrils;;graphene oxide;;TEMPO oxidation;;layer by layer self-assembly method;;ascorbic acid
  • 中文刊名:林业工程学报
  • 英文刊名:Journal of Forestry Engineering
  • 机构:南京林业大学材料科学与工程学院;
  • 出版日期:2019-03-16 11:36
  • 出版单位:林业工程学报
  • 年:2019
  • 期:02
  • 基金:“十三五”国家重点研发计划(2017YFD0600801);; 南京林业大学大学生创新项目(2017NFUSPITP104);; 国家自然科学基金青年基金(31700488)
  • 语种:中文;
  • 页:112-118
  • 页数:7
  • CN:32-1862/S
  • ISSN:2096-1359
  • 分类号:TB383.2
摘要
通过层层自组装法将氧化石墨烯沉积在TEMPO氧化纳米纤维素薄膜表面,制备了纳米纤维素/氧化石墨烯(CNFs/[GO]_n)复合薄膜,最后经抗坏血酸还原得到纳米纤维素/还原氧化石墨烯(CNFs/[RGO]_n)透明导电复合薄膜,并对其性能进行了表征。透光率检测显示,CNFs薄膜经过组装GO并还原成CNFs/[RGO]_n复合薄膜后仍具有良好的透光性。原子力学显微镜检测结果显示,CNFs/[RGO]_n复合薄膜粗糙度增加,还原氧化石墨烯(RGO)纳米片层均匀地分布在CNFs薄膜表面。傅里叶红外光谱图、拉曼光谱和X射线光电子能谱仪分析证实了GO被成功地沉积到CNFs薄膜表面,且被抗坏血酸还原成RGO。四探针电导率测试仪测试显示,随着层层自组装循环次数的增加,CNFs/[RGO]_n杂化薄膜的电导率逐渐增大,当自组装循环次数为25次时,电导率达到最大值0.782 S/cm。应力-应变测试表明,随着层层自组装循环次数的增加,CNFs/[RGO]_n薄膜的机械强度有所降低,但当自组装循环次数为25次时,最大应力仍高达80 MPa左右。通过该方法制备的柔性透明导电薄膜可广泛用于柔性透明显示器、超级电容器和可穿戴柔性电子器件等产品的制备。
        In this study,cellulose nanofibrils( CNFs) was isolated from bamboo powder by the combination of 2,2,6,6-tetramethylpiperidin-1-oxyl radical( TEMPO) catalytic oxidation and ultrasonic treatment,and then was filtrated to manufacture CNFs films. Subsequently,graphene oxide( GO) was deposited on the surface of CNFs films using Cu2+ as cross-linking agent through the layer-by-layer self-assembly method,then the GO on the surface of the CNFs films was reduced to the reduced grahene oxide( RGO) with ascorbic acid to synthesis CNFs/[RGO]_n composite films. The results of the UV-Vis spectrophotometer testing indicated that the light transmittance of the CNFs/[RGO]_n composite films was about 81.6% between 400 and 800 nm,which still showed a good optical transparency. The results of atomic force microscope observation indicated that the RGO nanosheets were evenly distributed on the surface of the CNFs films,and the roughness of the CNFs/[RGO]_n composite film was larger than that of the pure CNFs films. The results of Fourier transform infrared spectroscopy detection showed that the characteristic intensity of C=O,C=C and C—OH stretching vibration of the GO decreased significantly after subjection to the reduction treatment.The Raman spectroscopy analysis indicated that the intensity of D peak increased obviously after the GO was reduced,and the value of ID( intensity if D peak)/IG( intensity of G peak) increased from 0.914 to 1.302. The X-ray photoelectron spectroscopy analysis showed that the intensity of CO,C=O peaks located at 288.34 eV and 289.66 eV were decreased,and the atomic ratio of carbon to oxygen after the reduction was significantly reduced. These detections confirmed that the GO on the surface of the CNFs films was fully reduced to the RGO. The four-probe conductivity tester detection showed that the conductivity of CNFs/[RGO]n composite films increased with the increase of self-assembly layers. When the self-assembly layer reached 25 times,the conductivity of CNFs/[RGO]25 composite films was around 0.782 S/cm. The stress-strain testing showed that the stress of the CNFs/[RGO]n films decreased with the decrease of self-assembly layers,and the stress of CNFs/[RGO]n reached around 80 MPa when the self-assembly layer was 25 times. Through this way,the CNFs/[RGO]n composite films were flexible,transparent and conductive,which could be widely used in the fabrication of flexible supercapacitors,wearable electronic devices,solar cell,tc.
引文
[1]黄彪,卢麒麟,唐丽荣.纳米纤维素的制备及应用研究进展[J].林业工程学报,2016,1(5):1-9.DOI:10.13360/j.issn.2096-1359.2016.05.001.HUANG B,LU Q L,TANG L R.Research progress of nanocellulose manufacture and application[J].Journal of Forestry Engineering,2016,1(5):1-9.
    [2]LI Y Y,ZHU H L,SHEN F,et al.Nanocellulose as green dispersant for two-dimensional energy materials[J].Nano Energy,2015,13:346-354.DOI:10.1016/j.nanoen.2015.02.015.
    [3]何文,李吉平,金辉,等.毛竹纳米纤维素的烷基化改性[J].南京林业大学学报(自然科学版),2016,40(2):144-148.DOI:10.3969/j.issn.1000-2006.2016.02.024.HE W,LI J P,JIN H,et al.Research on the alkylation modification of cellulose nanofiber separated from moso bamboo[J].Journal of Nanjing Forestry University(Nature Sciences Edition),2016,40(2):144-148.
    [4]HE W,JIANG X,SUN F,et al.Extraction and characterization of cellulose nanofibers from phyllostachys nidularia Munro via a combination of acid treatment and ultrasonication[J].BioResources,2014,9(4):6876-6887.DOI:10.15376/biores.9.4.6876-6887.
    [5]何文,尤骏,蒋身学,等.毛竹纳米纤维素晶体的制备及特征分析[J].南京林业大学学报(自然科学版),2013,37(4):95-98.DOI:10.3969/j.issn.1000-2006.2013.04.018.HE W,YOU J,JIANG S X,et al.Isolation and characterization analysis of cellulose nanocrystal from moso bamboo[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2013,37(4):95-98.
    [6]吴清林,梅长彤,韩景泉,等.纳米纤维素制备技术及产业化现状[J].林业工程学报,2018,3(1):1-9.DOI:10.13360/j.issn.2096-1359.2018.01.001.WU Q L,MEI C T,HAN J Q,et al.Preparation technology and industrialization status of nanocellulose[J].Jounal of Forestry Engineering,2018,3(1):1-9.
    [7]丁婷婷,李倩,金贞福,等.纳米化竹粉/羧甲基纤维素复合膜材料制备及性能研究[J].林业工程学报,2017,2(5):90-94.DOI:10.13360/j.issn.2096-1359.2017.05.016.DING T T,LI Q,JIN Z F,et al.Preparation and properties of bamboo nano powder/carboxymethyl cellulose composite film[J].Journal of Forestry Engineering,2017,2(5):90-94.
    [8]SONG B,LI L Y,LIN Z Y,et al.Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities[J].Nano Energy,2015,16:470-478.DOI:10.1016/j.nanoen.2015.06.020.
    [9]许婧,邢悦,郝思嘉,等.石墨烯/聚合物基复合材料3D打印成型研究进展[J].材料工程,2018,46(7):1-11.DOI:10.11868/j.issn.1001-4381.2017.001333.XU J,XING Y,HAO S J,et al.Research progress in graphene/polymer composites processing using 3D printing technology[J].Journal of Materials Engineering,2018,46(7):1-11.
    [10]HE W,TIAN J X,LI J P,et al.Characterization and properties of cellulose nanofiber/polyaniline film composites synthesized through in situ polymerization[J].BioResources,2016,11(4):1-7.DOI:10.15376/biores.11.4.8535-8547.
    [11]LAY M,MENDEZ J A,PELACH M A,et al.Combined effect of carbon nanotubes and polypyrrole on the electrical properties of cellulose-nanopaper[J].Cellulose,2016,23(6):3925-3937.DOI:10.1007/s10570-016-1060-5.
    [12]WENG Z,SU Y,WANG D W,et al.Graphene-cellulose paper flexible supercapacitors[J].Advanced Energy Materials,2011,1(5):917-922.DOI:10.1002/aenm.201100312.
    [13]陈梓润,韦春,龚永洋,等.石墨烯的种类对剑麻纳米纤维素/石墨烯/聚苯胺复合材料电化学性能的影响[J].高分子材料科学与工程,2017,33(7):76-80.DOI:10.16865/j.cnki.1000-7555.2017.07.013.CHEN Z R,WEI C,GONG Y Y,et al.Electrochemical performances of different types of graphene on cellulose nano fiber/graphene/polyaniline composites[J].Polymer Materials Science&Engineering,2017,33(7):76-80.
    [14]XU S M,YU W J,YAO X L,et al.Nanocellulose-assisted dispersion of graphene to fabricate poly(vinyl alcohol)/graphene nanocomposite for humidity sensing[J].Composites Science and Technology,2016,131:67-76.DOI:10.1016/j.compscitech.2016.05.014.
    [15]徐子豪,韦春,龚永洋,等.纳米纤维素/氧化石墨烯/碳纳米管复合薄膜的制备及表征[J].高分子材料科学与工程,2017,33(7):150-154.DOI:10.16865/j.cnki.1000-7555.2017.07.026.XU Z H,WEI C,GONG Y Y,et al.Preparation and characterization of nano cellulose/graphene oxide/carbon nano tube composite film[J].Polymer Materials Science&Engineering,2017,33(7):150-154.
    [16]李晖,朱一辛,杨志斌,等.我国竹材微观构造及竹纤维应用研究综述[J].林业科技开发,2013,27(3):1-5.DOI:10.3969/j.issn.1000-8101.2013.03.001.LI H,ZHU Y X,YANG Z B,et al.Review on bamboo microscopic structure and bamboo fiber application in China[J].China Forestry Science and Technology,2013,27(3):1-5.
    [17]CHEN W S,YU H P,LIU Y X,et al.Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process[J].Cellulose,2011,18(2):433-442.DOI:10.1007/s10570-011-9497-z.
    [18]IWAMOTO S,NAKAGAITO A N,YANO H,et al.Optically transparent composites reinforced with plant fiber-based nanofibers[J].Applied Physics A,2005,81(6):1109-1112.DOI:10.1007/s00339-005-3316-z.
    [19]郝红英,王茜,邵自强,等.纤维素纳米纤维基层层自组装透明柔性导电膜及其电致变色柔性超级电容器[J].高等学校化学学报,2015,36(9):1838-1845.DOI:10.7503/cjcu20150146.HAO H Y,WANG X,SHAO Z Q,et al.Transparent flexible conductive thin films based on cellulose nanofibers by layer-bylayer assembly method and its fabricated electrochromic flexible supercapacitors[J].Chemical Journal of Chinese Universities,2015,36(9):1838-1845.
    [20]刘博锐,陈文帅.TEMPO催化氧化体系制备表面羧基化竹材纳米纤维素[J].纤维素科学与技术,2016,24(3):59-66.DOI:10.16561/j.cnki.xws.2016.03.11.LIU B R,CHEN W S.Preparation of bamboo nanofibrillated cellulose with carboxyl groups by TEMPO-mediated oxidation[J].Journal of Cellulose Science and Technology,2016,24(3):59-66.
    [21]WEI J G,CHEN Y F,LIU H Z,et al.Effect of surface charge content in the TEMPO-oxidized cellulose nanofibers on morphologies and properties of poly(N-isopropylacrylamide)-based composite hydrogels[J].Industrial Crops and Products,2016,92:227-235.DOI:10.1016/j.indcrop.2016.08.006.
    [22]刘红霞,徐阳,周昌兵,等.聚苯胺包覆纤维素纳米晶/石墨烯复合电极材料的制备与性能[J].高分子材料科学与工程,2017,33(11):166-170.DOI:10.16865/j.cnki.1000-7555.2017.11.027.LIU H X,XU Y,ZHOU C B,et al.Preparation and properties of polyaniline coated cellulose nanocrystals/graphene composite electrode materials[J].Polymer Materials Science&Engineering,2017,33(11):166-170.
    [23]FENG Y Y,ZHANG X Q,SHEN Y T,et al.A mechanically strong,flexible and conductive film based on bacterial cellulose/graphene nanocomposite[J].Carbohydrate Polymers,2012,87(1):644-649.DOI:10.1016/j.carbpol.2011.08.039.
    [24]张胜利,司丹亚,宋延华.抗坏血酸还原氧化石墨烯制备硫-石墨烯复合物[J].电源技术,2018,42(3):373-376.ZHANG S L,SI D Y,SONG Y H.Preparing S-graphene compound based on oxidized graphene restored by ascorbic acid[J].Chinese Journal of Power Sources,2018,42(3):373-376.
    [25]王闪闪,王全杰,曲家乐.不同还原程度氧化石墨烯-水性聚氨酯共混膜的性能研究[J].炭素技术,2013,32(4):35-38,46.DOI:10.14078/j.cnki.1001-3741.2013.04.001.WANG S S,WANG Q J,QU J L.The performances of the blended membranes of graphene oxide with different reduction degrees and water-based polyurethane[J].Carbon Techniques,2013,32(4):35-38,46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700