用户名: 密码: 验证码:
一个玉米叶夹角突变体的表型鉴定及遗传分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phenotyping and Genetic Analysis of Leaf Angle Mutant in Maize (Zea mays L.)
  • 作者:王晓娟 ; 何海军 ; 刘忠祥 ; 杨彦忠 ; 寇思荣 ; 连晓荣 ; 周玉乾 ; 周文期
  • 英文作者:WANG Xiaojuan;HE Haijun;LIU Zhongxiang;YANG Yanzhong;KOU Sirong;LIANG Xiaorong;ZHOU Yuqian;ZHOU Wenqi;The Crop Institute of Gansu Academy of Agricultural Science;
  • 关键词:玉米 ; 叶夹角 ; 突变体 ; BSA ; 遗传分析 ; 基因定位
  • 英文关键词:Maize;;Leave angle;;Mutant;;Bulked segregant analysis(BSA);;Genetic;;Gene Mapping
  • 中文刊名:西北农业学报
  • 英文刊名:Acta Agriculturae Boreali-occidentalis Sinica
  • 机构:甘肃省农业科学院作物研究所;
  • 出版日期:2019-07-09 10:51
  • 出版单位:西北农业学报
  • 年:2019
  • 期:08
  • 基金:国家自然科学基金(31860383);; 国家重点研发计划(2018YFD0100202-3);; 甘肃省玉米产业技术体系(2018GARS-02-03)~~
  • 语种:中文;
  • 页:20-25
  • 页数:6
  • CN:61-1220/S
  • ISSN:1004-1389
  • 分类号:S513
摘要
玉米叶夹角是高密度育种的重要影响因子,与株型育种及产量高度相关;叶夹角相关QTL/基因的鉴定不仅有助于剖析叶夹角的遗传基础,也为玉米叶夹角及株型的遗传改良提供重要的分子靶点。以自交系‘LY8405’自然突变获得的突变体‘FU1603’为主要研究材料,开展叶夹角性状的表型鉴定、遗传分析及定位等试验。结果表明,与‘LY8405’相比,‘FU1603’穗三叶的叶夹角显著降低(P<0.05),而且伴随有叶片卷曲等表型;且在植株的株型、穗部性状及籽粒性状上均发生了显著的改变(P<0.05)。遗传分析表明‘FU1603’为一个单隐性核基因控制的突变体(χ~2值>0.5)。采用BSA (Bulked segregant analysis)方法筛选到与突变位点紧密连锁的3个SSR标记C1-2、C1-16和C1-18,利用‘FU1603’与‘B73’自交系杂交产生的160个F_2单株开展了上述3个连锁标记的共分离分析;进一步利用此3个标记筛选后代重组交换单株,最终将控制叶夹角的突变位点定位在玉米第一染色体1.02 bin标记C1-18和C1-2之间9 Mb范围之内,为后续该位点的精细定位及克隆奠定良好的基础。
        Leaf angle is an important trait for high density breeding in maize,which is highly correlated with plant architecture and crop production. So the identification of QTL or genes related to leave angle is not only useful to uncover the genetic mechanism of leaf angle,but also important for practical application value in the high density breeding and architecture breeding. ‘FU1603',a natural mutant from the maize inbred line ‘LY8405',was served as the material to identify phenotype,genetic analysis and gene mapping. The results showed that ‘FU1603' has a phenotype of small leaf angles and curled leaves. The other agronomic traits of the mutant ‘FU1603' including the plant architectures,ears,tassels and kernels were also changed significantly,compared with ‘LY8405'. The genetic analysis indicated that ‘FU1603' was a mutant with small leaf angle controlled by a single recessive nuclear gene. Three SSR markers closely linked to this locus were identified by BSA method,namely C1-2,C1-16,C1-18,and all of them located in the 1.02 bin of chromosome 1 in maize. To verify the three linked SSR markers,160 F_2 plants were used,and the mutation site was mapped between markers C1-18 and C1-2 with recombinant plants,which was about 9 Mb physical region according to ‘B73' reference genome.
引文
[1] LEE E A,TOLLENAAR M.Physiological basis of successful breeding strategies for maize grain yield [J].Crop Science,2007,47(S3):202-215.
    [2] LAUER S,HALL BD,MULAOSMANOVIC E,et al.Morphological changes in parental lines of pioneer brand maize hybrids in the U.S.central corn belt [J].Crop Science,2012,52(3):1033-1043.
    [3] TOLLENAAR M,DWYER L M.Physiology of Maize [M].Germany:Springer,1998.
    [4] WANG H,YANG C,ZHANG C,et al.Dual role of BKI1 and 14-3-3 s in brassinosteroid signaling to link receptor with transcription factors [J].Developmental Cell,2011,21(5):825-834.
    [5] ZHAO J,MANTILLA PEREZ MB,HU J,et al.Genome-wide association study for nine plant architecture traits in Sorghum [J].Plant Genome,2016,9(2):1-14.
    [6] KU L X,WEI X M,ZHANG S F,et al.Cloning and characterization of a putative TAC1 ortholog associated with LA in maize [J].PLoS ONE,2011,6(6):e20621.
    [7] DONG H,ZHAO H,XIE W,et al.A novel tiller angle gene,TAC3,together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars [J].PLoS Genetics,2016,12(11):e1006412.
    [8] MICHELMORE R W,PARAN I,KESSELI R V.Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations [J].Proceedings of the National Academy of Sciences,1991,88(21):9828-9832.
    [9] TAKAGI H,ABE A,YOSHIDA K,et al.QTL-seq:rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations [J].The Plant Journal,2013,74(1):174-183.
    [10] WENGER W J,SCHWARTZ K,SHERLOCK G.Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae [J].PLoS Genetics,2010,6(5):e1000942.
    [11] ABE A,KOSUGI S,YOSHIDA K,et al.Genome sequencing reveals agronomically important loci in rice using MutMap [J].Nature Biotechnology,2012,30(2):174-178.
    [12] WAMBUGU P,NDJIONDJOP MN,FURTADO A,et al.Sequencing of bulks of segregants allows dissection of genetic control of amylose content in rice [J].Plant Biotech Journal,2018,16(1):100-110.
    [13] SONG J,LI Z,LIU Z,et al.Next-generation sequencing from bulked-segregant analysis accelerates the simultaneous identification of two qualitative genes in soybean [J].Frontiers Plant Science,2017,8:919
    [14] TRICK M,ADAMSKI NM,MUGFORD SG,et al.Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat [J].BMC Plant Biology,2012,12:14.
    [15] LIVAJA M,WANG Y,WIECKHORST S,et al.BSTA:a targeted approach combines bulked segregant analysis with next-generation sequencing and de novo transcriptome assembly for SNP discovery in sunflower [J].BMC Genomics,2013,14(1):628.
    [16] HAN Y C,Lü P,HOU S L,et al.Combining next generation sequencing with bulked segregant analysis to fine map a stem moisture locus in Sorghum (Sorghum bicolor L.Moench) [J].PLoS One,2015,10:e0127065.
    [17] DUVICK D N.Genetic progress in yield of united states maize(Zea mays L.) [J].Maydica,2005,50(3):193-202.
    [18] MA D L,XIE R Z,NIU X K,et al.Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s [J].European Journal of Agronomy,2014,58:1-10.
    [19] STRABLE J,WALLACE J G,UNGER-WALLACE E,et al.Maize YABBY genes drooping leaf1 and drooping leaf 2 regulate plant architecture[J].Plant Cell,2017,2017,29(7):1622-1641.
    [20] MORENO M A,HARPER L C,KRUEGER R W,et al.Liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis [J].Genes and Development,1997,11(5):616-628.
    [21] WALSH J,WATERS C A,FREELING M,The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary [J].Genes and Development,1998,12(2):208-218.
    [22] LAMBERT R J,JOHNSON R R.Leaf angle,tassel morphology,and the performance of maize hybrids 1[J].Crop Science,1978,18(3):499-502.
    [23] CAI M J,LI SH ZH,SUN F,et al.Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad 2 intron 1 and seed development in maize [J].Plant Journal,2017,91(1):132-144.
    [24] ZHANG D,SUN W,RENEE S,et al.GRF-interacting factor1 regulates shoot architecture and meristem determinacy in maize [J].Plant Cell,2018,30(2):360-374.
    [25] HAN X S,QIN Y,YU F,et al.A megabase-scale deletion is sssociated with phenotypic variation of multiple traits in maize [J].Genetics,2018,211(1):305-316

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700