用户名: 密码: 验证码:
器官及其应用的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in The Research of Organoids and Applications
  • 作者:李甜瑞 ; 赵瑞波 ; 张权 ; 孔祥东
  • 英文作者:LI Tian-Rui;ZHAO Rui-Bo;ZHANG Quan;KONG Xiang-Dong;College of Materials and Textiles, Zhejiang Sci-Tech University;Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering;College of Life Sciences and Medicine, Zhejiang Sci-Tech University;
  • 关键词:器官 ; 药物筛选 ; 再生医学 ; 血管化 ; 生物材料
  • 英文关键词:organoids;;drug screening;;regenerative medicine;;vascularization;;biomaterial
  • 中文刊名:生物化学与生物物理进展
  • 英文刊名:Progress in Biochemistry and Biophysics
  • 机构:浙江理工大学材料与纺织学院;浙江-毛里求斯生物医用材料与组织工程联合研究中心;浙江理工大学生命科学与医药学院;
  • 出版日期:2019-08-20
  • 出版单位:生物化学与生物物理进展
  • 年:2019
  • 期:08
  • 基金:国家自然科学基金(51672250);; 浙江省自然科学基金(LQ19E020010);; 浙江省“一带一路”国际科技合作项目(2019C04020)资助~~
  • 语种:中文;
  • 页:6-19
  • 页数:14
  • CN:11-2161/Q
  • ISSN:1000-3282
  • 分类号:R318
摘要
器官弥补了传统研究中细胞简单模型与动物复杂模型的不足,为生命体关键功能研究提供了重要实验基础,已成为当前研究热点,并在疾病机理研究、药物筛选、再生医学、生物材料评价等方面具有重大理论意义和应用前景.本文对近10年类器官研究进行了综述,阐述出类器官研究的发展历程和研究现状,重点综述了类器官的主要研究领域,并解析类器官研究中存在的关键科学问题,为类器官在生物医药、再生医学和疾病精准治疗领域的研究和应用提供新思路.
        Organoid can make up for the deficiency of cell models and animal models commonly used in traditional research. And it also provides an important experimental basis for the study of key functional studies of living organisms. At the present stage, organoid model has become a hot research field and is of great significance in disease mechanism research, drug screening, regenerative medicine, and biomedical material evaluation. In this paper, the research of organoids in the past 10 years is reviewed. It summarizes the development history and research status of organoid research, and also focuses on the main research fields of organoids. In addition, this paper mainly analyzes the key scientific issues in the study of organoids and propose ideas for organoid in biomedicine, regenerative medicine and precise treatment of diseases.
引文
[1] Fatehullah A, Tan S H, Barker N. Organoids as an in vitro model of human development and disease. Nature Cell Biology, 2016,18(3):246-254
    [2] Lancaster M A, Knoblich J A. Organogenesis in a dish:modeling development and disease using organoid technologies. Science,2014, 345(6194):12471251-12471259
    [3] Toshiro S, Robert G V, Hugo J S, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature, 2009, 459(7244):262-265
    [4] Dedhia P H, Bertaux-Skeirik N, Zavros Y, et al. Organoid models of human gastrointestinal development and disease.Gastroenterology, 2016, 150(5):1098-1112
    [5] Mccracken K W, CatáE M, Crawford C M, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 2014, 516(7531):400-404
    [6] Nick B, Meritxell H, Pekka K, et al. Lgr5(+ve)stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 2010, 6(1):25-36
    [7] Sugimoto S, Ohta Y, Fujii M, et al. Reconstruction of the human colon epithelium in vivo. Cell Stem Cell, 2018, 22(2):171-176
    [8] Xie B Y, Wu A W. Organoid culture of isolated cells from patientderived tissues with colorectal cancer. Chinese Medical Journal,2016, 129(20):2469-2475
    [9] Sato T, Stange D E, Marc F, et al. Long-term expansion of epithelial organoids from human colon, adenoma,adenocarcinoma, and Barrett's epithelium. Gastroenterology,2011, 141(5):1762-1772
    [10] Dye B R, Hill D R, Ferguson M A, et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife, 2015,4(4):e5098-e5122
    [11] Chapman H A, Xiaopeng L, Alexander J P, et al. Integrinα6β4identifies an adult distal lung epithelial population with regenerative potential in mice. Journal of Clinical Investigation,2011, 121(7):2855-2862
    [12] Shin K, Lee J, Guo N, et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder.European Urology, 2012, 61(6):1263-1264
    [13] Lancaster M A, Magdalena R, Carol-Anne M, et al. Cerebral organoids model human brain development and microcephaly.Movement Disorders, 2013, 501(7467):373-378
    [14] Lancaster M A, Knoblich J A. Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 2014, 9(10):2329-2340
    [15] Au S H, Chamberlain M D, Mahesh S, et al. Hepatic organoids for microfluidic drug screening. Lab on A Chip, 2014, 14(17):3290-3299
    [16] Leite S B, Roosens T, Taghdouini A E, et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials, 2016, 78:1-10
    [17] Huch M, Dorrell C, Boj S F, et al. In vitro expansion of single Lgr5+liver stem cells induced by Wnt-driven regeneration.Nature, 2013, 494(7436):247-250
    [18] Huch M, Bonfanti P, Boj S F, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. Embo Journal, 2013, 32(20):2708-2721
    [19] Morizane R, Lam A Q, Freedman B S, et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nature Biotechnology, 2015, 33(11):1193-1200
    [20] Minoru T, Pei X, Er, Han S, Chiu, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 2016, 526(7574):564-568
    [21] Soragni A, Janzen D M, Johnson L M, et al. A designed inhibitor of p53 aggregation rescues p53 tumor-suppression in ovarian carcinomas. Cancer Cell, 2016, 29(1):90-103
    [22] Mirjana K, Karen H, Volker B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nature Communications, 2015, 6:8989-8998
    [23] Trisno S L, Philo K E, Mccracken K W, et al. Esophageal organoids from human pluripotent stem cells delineate Sox2functions during esophageal specification. Cell Stem Cell, 2018,23(4):501-515
    [24] Nugraha B, Buono M F, Von Boehmer L, et al. Human cardiac organoids for disease modeling. Clinical Pharmacology&Therapeutics, 2018, 105(1):79-85
    [25] Nantasanti, Sathidpak, Spee, et al. Disease modeling and gene therapy of copper storage disease in canine hepatic organoids.Stem Cell Reports, 2015, 5(5):895-907
    [26] Kim G A, Spence J R, Takayama S. Bioengineering for intestinal organoid cultures. Current Opinion in Biotechnology, 2017,47:51-58
    [27] Rheinwald J G, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell, 1975,6(3):317-330
    [28] Rheinwald J G, Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature,1977, 265(5593):421-424
    [29] Spence J R, Mayhew C N, Rankin S A, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 2011, 470(7332):105-109
    [30] Lu W, Rettenmeier E, Paszek M, et al. Crypt organoids culture as an in vitro model in drug metabolism and cytotoxicity studies.Drug Metabolism&Disposition the Biological Fate of Chemicals,2017, 45(7):748-754
    [31] Liu C, Oikonomopoulos A, Sayed N, et al. Modeling human diseases with induced pluripotent stem cells:from 2D to 3D and beyond. Development, 2018, 145(5):156166-156171
    [32] Broutier L, Anderssonrolf A, Hindley C J, et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocols, 2016, 11(9):1724-1743
    [33] Choi J, Iich E, Lee J H. Organogenesis of adult lung in a dish:differentiation, disease and therapy. Developmental Biology,2016, 420(2):278-286
    [34] Sachs N, De J L, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1-2):373-386
    [35] Morizane R, Bonventre J V. Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells.Nature Protocols, 2016, 12(1):195-207
    [36] Fiore D, Ramesh P, Proto M C, et al. Rimonabant kills colon cancer stem cells without inducing toxicity in normal colon organoids.Frontiers in Pharmacology, 2017, 8:949-950
    [37] Bruens L, Snippert H J G. Expanding the tissue toolbox:deriving colon tissue from human pluripotent stem cells. Cell Stem Cell,2017, 21(1):3-5
    [38] Pham M T, Pollock K M, Rose M D, et al. Generation of human vascularized brain organoids. Neuroreport, 2018, 29(7):588-593
    [39] Walsh A J, Cook R S, Sanders M E, et al. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Research, 2014, 74(18):5184-5194
    [40] Simian M, Bissell M J. Organoids:A historical perspective of thinking in three dimensions. Journal of Cell Biology, 2017,216(1):31-40
    [41] Miller A J, Dye B R, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nature Protocols, 2019, 14:518-540
    [42] Cheung K J, Edward G, Zena W, et al. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell, 2013,155(7):1639-1651
    [43] Dong G, Ian V, Andrea S, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell, 2014, 159(1):176-187
    [44] Karthaus W, Iaquinta P, Drost J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell,2014, 159(1):163-175
    [45] Mills R J, Titmarsh D M, Koenig X, et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci USA, 2017,114(40):e8372-e8381
    [46] Kai W, Siu Tsan Y, Jiangchun X, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nature Genetics, 2014, 46(6):573-582
    [47] Van D W M, Francies H E, Francis J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015, 161(4):933-945
    [48] Hirt M N, Hansen A, Eschenhagen T. Cardiac tissue engineering state of the art. Circulation Research, 2014, 114(2):354-367
    [49] Wimmer R A, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature, 2019,565(7740):505-510
    [50] Sasaki N, Sachs N, Wiebrands K, et al. Reg4+deep crypt secretory cells function as epithelial niche for Lgr5+stem cells in colon.Proc NatlAcad Sci USA, 2016, 113(37):e5399-e5407
    [51] Müeller B J, Zhdanov A V, Borisov S M, et al. Nanoparticle-based fluoroionophore for analysis of potassium ion dynamics in 3D tissue models and in vivo. Advanced Functional Materials, 2018,28(9). pii:1704598
    [52] Siegel R L, Miller K D, Jemal A J. Cancer statistics, 2019. CA:A Cancer Journal for Clinicians, 2019, 69(1):7-34
    [53] Zhao Y, Kankala R K, Wang S B, et al. Multi-organs-on-chips:towards long-term biomedical Investigations. Molecules, 2019,24(4):675-696
    [54] Bhatia S N, Ingber D E. Microfluidic organs-on-chips. Nature Biotechnology, 2014, 32(8):760-772
    [55] Zhang Q, Cai Y, Li Q Y, et al. Targeted delivery of a mannoseconjugated BODIPY photosensitizer by nanomicelles for photodynamic breast cancer therapy. Chemistry, 2017, 23(57):14307-14315
    [56] Qian X, Jacob F, Song M M, et al. Generation of human brain region–specific organoids using a miniaturized spinning bioreactor. Nature Protocols, 2018, 13(3):565-580
    [57] Huh D, Hamilton G A, Ingber D E. From three-dimensional cell culture to organs-on-chips. Trends in Cell Biology, 2011, 21(12):745-754
    [58] Astashkina A I, Mann B K, Prestwich G D, et al. A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials, 2012, 33(18):4700-4711
    [59] Astashkina A I, Jones C F, Thiagarajan G, et al. Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model. Biomaterials, 2014, 35(24):6323-6331
    [60] Tamai M, Adachi E, Tagawa Y. Characterization of a liver organoid tissue composed of hepatocytes and fibroblasts in dense collagen fibrils. Tissue Engineering PartA, 2013, 19(21-22):2527-2535
    [61] Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature,2013, 499(7459):481-484
    [62] Dye B R, Dedhia P H, Miller A J, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. eLife, 2016, 5:e19732-e19749
    [63] Steele N G, Chakrabarti J, Wang J, et al. An organoid-based preclinical model of human gastric cancer. Cellular Molecular Gastroenterology Hepatology, 2019, 7(1):161-184
    [64] Zhao R B, Ren X Y, Xie C G, et al. Towards understanding the distribution and tumor targeting of sericin regulated spherical calcium phosphate nanoparticles. Microscopy Research&Technique, 2016, 80(3):321-330
    [65] Zhao R B, Wang B, Yang X Y, et al. A drug-free tumor therapy strategy:cancer cell targeting calcification. Angewandte Chemie,2016, 55(17):5225-5229
    [66] Pedde R D, Mirani B, Navaei A, et al. Emerging biofabrication strategies for engineering complex tissue constructs. Advanced Materials, 2017, 29(19):1606061-1606087
    [67] Kankala R K, Kai Z, Sun X, et al. Cardiac tissue engineering on the nanoscale. Acs Biomaterials Science&Engineering, 2018, 4(3):800-818
    [68] Devarasetty M, Wang E, Soker S, et al. Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy.Biofabrication, 2017, 9(2):021002-021010
    [69] Fu C Y, Lin C Y, Chu W C, et al. A simple cell patterning method using magnetic particle-containing photosensitive poly(ethylene glycol)hydrogel blocks:a technical note. Tissue Engineering Part C Methods, 2011, 17(8):871-877
    [70] Heidariyan Z, Ghanian M H, Ashjari M, et al. Efficient and costeffective generation of hepatocyte-like cells through microparticle-mediated delivery of growth factors in a 3D culture of human pluripotent stem cells. Biomaterials, 2018, 159:174-188
    [71] Mccray T, Richards Z, Marsili J, et al. Handling and assessment of human primary prostate organoid culture. JoVE, 2019,143:e59051-e59061
    [72] Saito R, Ishii Y, Ito R, et al. Transplantation of liver organoids in the omentum and kidney.Artificial Organs, 2011, 35(1):80-83
    [73] Luo Z, Zhang S, Pan J, et al. Time-responsive osteogenic niche of stem cells:a sequentially triggered, dual-peptide loaded, alginate hybrid system for promoting cell activity and osteodifferentiation. Biomaterials, 2018, 163:25-42
    [74] Ijima H, Mizumoto H, Nakazawa K, et al. Hepatocyte growth factor and epidermal growth factor promote spheroid formation in polyurethane foam/hepatocyte culture and improve expression and maintenance of albumin production. Biochemical Engineering Journal, 2009, 47(1):19-26
    [75] Fong E L S, Tan B T, Lin X, et al. Generation of matched patientderived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer. Biomaterials, 2018,159:229-240
    [76] Mizumoto H, Amimoto N, Miyazawa T, et al. In vitro and ex vivo functional evaluation of a hollow fiber-type bioartificial liver module containing ES cell-derived hepatocyte-like cells.Advanced Biomedical Engineering, 2018, 7:18-27
    [77]李泽豪,任小元,王世兵,等.介导siRNA传递的非病毒载体及其研究进展.生命科学,2014,26(4):392-399Li Z H, Ren X Y, Wang S B, et al. Chinese Bulletin of Life Sciences,2014, 26(4):392-399
    [78] Bertassoni L E, Cardoso J C, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.Biofabrication, 2014, 6(2):024105-024115
    [79]宋东娟,童锦禄,冉志华,等.小肠类器官培养技术的建立和优化.胃肠病学,2016,21(2):75-79Song D J, Tong J L, Ran Z H, et al. Chinese Journal of Gastroenterology, 2016, 21(2):75-79
    [80] Rambani K, Vukasinovic J, Glezer A, et al. Culturing thick brain slices:an interstitial 3D microperfusion system for enhanced viability. Journal of Neuroscience Methods, 2009, 180(2):243-254
    [81] Baptista P M, Siddiqui M M, Lozier G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology, 2011, 53(2):604-617
    [82] Robertson M J, Soibam B, O'leary J G, et al. Recellularization of rat liver:an in vitro model for assessing human drug metabolism and liver biology. Plos One, 2018, 13(1):e0191892-e0191914
    [83] Rocha F G, Sundback C A, Krebs N J, et al. The effect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials, 2008, 29(19):2884-2890
    [84] Baptista P M, Siddiqui M M, Lozier G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology, 2011, 53(2):604-617
    [85]宋海飞,林博文,龚诚宸,等.细胞迁移相关蛋白酶的研究进展.生物化学与生物物理进展,2017,44(2):99-109Song H F, Lin B W, Gong C C, et al. Progress in Biochemistry and Biophysics, 2017, 44(2):99-109
    [86] Huch M, Gehart H, Vanboxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell,2015, 160(1-2):299-312
    [87] Lu Y, Zhang G, Shen C, et al. A novel 3D liver organoid system for elucidation of hepatic glucose metabolism. Biotechnology&Bioengineering, 2015, 109(2):595-604
    [88] Kankala R K, Zhu K, Li J, et al. Fabrication of arbitrary 3D components in cardiac surgery:from macro-, micro-to nanoscale.Biofabrication, 2017, 9(3):032002-032017

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700