用户名: 密码: 验证码:
水分处理对榆树幼苗不同器官非结构性碳水化合物的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Different Water Treatments on Non-Structural Carbohydrates in Different Organs of Ulmus pumila Seedlings in the Horqin Sandy Land
  • 作者:王凯 ; 赵成姣 ; 林婷婷 ; 于国庆 ; 孙菊
  • 英文作者:WANG Kai;ZHAO Cheng-jiao;LIN Ting-ting;YU Guo-qing;SUN Ju;College of Environmental Science and Engineering,Liaoning Technical University;Liaoning Institute of Sandyland Improvement and Utilization;Shenyang Institute of Applied Ecology,Chinese Academy of Sciences;
  • 关键词:榆树(Ulmus ; pumila ; Linn) ; 幼苗 ; 器官 ; 非结构性碳水化合物 ; 科尔沁沙地
  • 英文关键词:Ulmus pumila Linn.;;seedling;;organ;;non-structural carbohydrate;;Horqin sandy land
  • 中文刊名:干旱区研究
  • 英文刊名:Arid Zone Research
  • 机构:辽宁工程技术大学环境科学与工程学院;辽宁省风沙地改良利用研究所;中国科学院沈阳应用生态研究所;
  • 出版日期:2018-11-19 13:19
  • 出版单位:干旱区研究
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目(31400613);; 辽宁省教育厅服务地方项目(LJ2017FBL005)资助
  • 语种:中文;
  • 页:116-124
  • 页数:9
  • CN:65-1095/X
  • ISSN:1001-4675
  • 分类号:S792.19
摘要
设置正常供水、轻度、中度和重度干旱处理,分析两年生榆树幼苗不同器官的可溶性糖、淀粉及非结构性碳水化合物(NSC)随处理时间延长(15、30、45 d和60 d)的变化特征。结果表明:水分处理15 d时,随着干旱程度增加,叶片和细根可溶性糖含量呈下降趋势,叶片淀粉含量在中度和重度干旱处理最低,为(18. 35±0. 06) mg·g~(-1),茎和粗根可溶性糖含量在重度干旱处理显著低于其他处理。处理30 d时,叶片淀粉和NSC含量随干旱程度增加呈上升趋势,且叶片淀粉含量在重度干旱处理最高,为(47. 83±0. 27) mg·g~(-1),茎和粗根淀粉及NSC含量在轻度干旱处理下显著低于适宜水分处理。处理45 d时,随干旱程度增加,细根可溶性糖/淀粉呈下降趋势,叶片可溶性糖含量、可溶性糖/淀粉和茎淀粉含量在重度干旱处理显著高于其他处理。处理60 d时,随着干旱程度增加,叶片和细根可溶性糖/淀粉逐渐增加,粗根可溶性糖、淀粉和NSC含量在重度干旱处理显著高于其他处理,并且NSC含量达到最大值(68. 88±1. 01) mg·g~(-1)。以上结果表明,榆树幼苗各器官可溶性糖、淀粉及NSC含量随着处理时间延长做出不同的响应,各器官NSC下降,并在粗根中积累。这为科尔沁沙地榆树防护林的水分管理提供依据。
        Two-year-old Ulmus pumila seedlings were grown under suitable water,mild,moderate and severe drought treatments. The soluble sugar,starch and non-structural carbohydrate( NSC) contents in different organs of the seedlings were measured after the drought treatment for 15,30,45 and 60 days. The results showed that,on the 15 th day of treatment,the soluble sugar contents in leaves and fine roots decreased with the increase of drought level,and the starch content in leaves under moderate and severe drought treatments reduced to the minimum value( 18. 35 ± 0. 06) mg·g~(-1). The soluble sugar contents in stems and coarse roots under severe drought treatment were significantly lower than those under other treatments. On the 30 th day of treatment,the starch and NSC contents in leaves increased with the increase of drought degree,and the starch content in leaves under severe drought treatment increased to the maximum value( 47. 83 ± 0. 27) mg·g~(-1). The starch and NSC contents in stems and coarse roots under mild drought treatment were lower than those under suitable water treatment. On the 45 th day of treatment,the ratio of soluble sugar and starch in fine roots decreased with the increase of drought level. The soluble sugar content,ratio of soluble sugar and starch in leaves and the starch in stems under severe drought treatment were significantly higher than those under other treatments. On the 60 th day of treatment,the ratio of soluble sugar and starch in leaves and fine roots gradually increased with the increase of drought degree. The soluble sugar,starch and NSC contents in coarse roots under severe drought treatment were significantly higher than those under other treatments,and the content of NSC increased to the maximum value( 68. 88 ± 1. 01) mg·g~(-1). The above results indicated that soluble sugar,starch and NSC in all organs of U. pumila seedlings differently responded with the increase of treatment time. The NSC in each organ decreased and accumulated in coarse roots. This provides an evidence for water management of U. pumila protection forest in Horqin sandy land.
引文
[1]IPCC.Climate Change 2014:Mitigation of Climate Change.ContriBution of Working GroupⅢto the Fifth Assessment report of the Intergovernmental Panel on Climate Change[M].Cambridge:Cambridge University Press,2014.
    [2]Anderegg W R,Anderegg L D.Hydraulic and carbohydrate changes in experimental drought induced mortality of saplings in two conifer species[J].Tree Physiology,2013,33(3):252-260.
    [3]Richardson A D,Carbone M S,Keenan T F,et al.Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees[J].New Phytologist,2013,197(3):850-861.
    [4]Salleo S,Trifilo P,Esposito S,et al.Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants:A component of the signal pathway for embolism repair[J].Functional Plant Biology,2009,36(9):815-825.
    [5]Dietze M C,Sala A,Carbone M S,et al.Nonstructural carbon in woody plants[J].Annual Review of Plant Biology,2014,65(1):667-687.
    [6]Xie H T,Yu M K,Cheng X R.Leaf non-structural carbohydrate allocation and C∶N∶P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species[J].Plant Physiology&Biochemistry,2018,124:146-154.
    [7]周朝彬,王梦瑶,龚伟.梭梭射线组织特征与非结构性碳水化合物含量的关系[J].干旱区研究,2018,35(5):1 105-1 110.[Zhou Chaobin,Wang Mengyao,Gong Wei.Relationship between ray tissue features and non-structural carbohydrates in Xylem of Haloxylon ammodendron[J].Arid Zone Research,2018,35(5):1 105-1 110.]
    [8]杜尧,韩轶,王传宽.干旱对兴安落叶松枝叶非结构性碳水化合物的影响[J].生态学报,2014,34(21):6 090-6 100.[Du Yao,Han Yi,Wang Chuankuan.The influence of drought on nonstructural carbohydrates in the needles and twigs of Larix gmelinii[J].Acta Ecologica Sinica,2014,34(21):6 090-6 100.]
    [9]张婷,曹扬,陈云明,等.生长季末期干旱胁迫对刺槐幼苗非结构性碳水化合物的影响[J].水土保持学报,2016,30(5):297-304.[Zhang Ting,Cao Yang,Chen Yunming,et al.Effects of drought stress on nonstructural carbohydrates of Robinia pseudoacacia saplings at the end of the growing season[J].Journal of Soil and Water Conservation,2016,30(5):297-304.]
    [10]Kannenberg S A,Novick K A,Phillips R P.Coarse roots prevent declines in whole-tree non-structural carbohydrate pools during drought in an isohydric and an anisohydric species[J].Tree Physiology,2017,38(4):1-9.
    [11]史宇飞,金永焕,金兰淑,等.科尔沁沙地榆树疏林的土壤空间变异特征[J].干旱区研究,2015,32(5):897-902.[Shi Yufei,Jin Yonghuan,Jin Lanshu,et al.Study on the soil spatial variability of Ulmus pumila open forest in Horqin Sandy Land[J].Arid Zone Research,2015,32(5):897-902.]
    [12]张继义,付丹,魏珍珍,等.科尔沁沙地几种乔灌木树种耐受极端土壤水分条件与生存能力野外实地测定[J].生态学报,2016,26(2):467-474.[Zhang Jiyi,Fu Dong,Wei Zhenzhen,et al.Determination of the ability of several tree and shrub species to endure and survive extreme aridity with methods of limited areas under field condition in Horqin Sandy Land[J].Acta Ecologica Sinica,2016,26(2):467-474.]
    [13]夏尚光,张金池,梁淑英.水分胁迫下3种榆树幼苗生理变化与抗旱性的关系[J].南京林业大学学报(自然科学版),2008,32(3):131-134.[Xia Shangguang,Zhang Jinchi,Liang Shuying.Relationship between drought resistance and physiological change of three elm trees seedling under water stress[J].Journal Nanjing Forestry University(Natural Sciences Edition),2008,32(3):131-134.]
    [14]王凯,雷虹,刘建华.春季辽宁西北部主要绿化树种根叶抗旱生理性状评价[J].应用生态学报,2016,27(6):1 853-1 860.[Wang Kai,Lei Hong,Liu Jianhua.Evaluation of drought-resistant physiological characteristics of roots and leaves for main greening tree species in Northwest Liaoning Province,China in spring[J].Chinese Journal of Applied Ecology,2016,27(6):1 853-1 860.]
    [15]辛福梅,杨小林,赵垦田,等.干旱胁迫对拉萨半干旱河谷主要乔木树种幼树耗水及光合特性的影响[J].浙江大学学报(农业与生命科学版),2016,42(2):199-208.[Xin Fumei,Yang Xiaolin,Zhao Kentian,et al.Effect of drought stress on characteristics of water consumption and photosynthesis for main arbor species in semi-arid valley of Lhasa[J].Journal of Zhejiang University(Agriculture&Life Sciences),2016,42(2):199-208.]
    [16]王凯,宋立宁,吕林有,等.科尔沁沙地主要造林树种细根生物量垂直分布特征[J].植物研究,2014,34(6):824-828.[Wang Kai,Song Lining,Lv Linyou,et al.Fine root biomass vertical distribution character of main afforestation tree species in Horqin Sandy Land[J].Bulletin of Botanical Research,2014,34(6):824-828.]
    [17]王凯,雷虹,夏扬,等.杨树幼苗非结构性碳水化合物对增加降水和氮添加的响应[J].应用生态学报,2017,28(2):399-407.[Wang Kai,Lei Hong,Xia Yang,et al.Responses of nonstructural carbohydrates of poplar seedlings to increased precipitation and nitrogen addition[J].Chinese Journal of Applied Ecology,2017,28(2):399-407.]
    [18]朱教君,康宏樟,李智辉,等.水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响[J].生态学报,2005,25(10):2 527-2 533.[Zhu Jiaojun,Kang Hongzhang,Li Zhihui,et al.Impact of water stress on survival and photosynthesis of Mongolian pine seedlings on sandy land[J].Acta Ecologica Sinica,2005,25(10):2 527-2 533.]
    [19]Hoch G,Popp M,Korner C.Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline[J].Oikos,2002,98(3):361-374.
    [20]Buysse J,Merckx R.An improved colorimetric method to quantify sugar content of plant tissue[J].Journal of Experimental Botany,1993,44(267):1 627-1 629.
    [21]郭瑞盼,辛泽毓,王志强,等.干旱胁迫对小麦非结构性碳水化合物代谢的影响及其与抗旱性的关系[J].华北农学报,2015,30(2):202-211.[Guo Ruipan,Xin Zeyu,Wang Zhiqiang,et al.Effect of drought stress on non-structure carbohydrate metabolism of wheat and its relationship with drought resistance[J].Acta Agriculturae Boreali-Sinica,2015,30(2):202-211.]
    [22]夏振华,陈亚宁,朱成刚,等.干旱胁迫环境下的胡杨叶片气孔变化[J].干旱区研究,2018,35(5):1 111-1 117.[Xia Zhenhua,Chen Yaning,Zhu Chenggang,et al.Stomatal change in leaves of Population euphratica under drought stress[J].Arid zone research,2018,35(5):1 111-1 117.]
    [23]Mcdowell N,Pockman W T,Allen C D,et al.Mechanisms of plant survival and mortality during drought:Why do some plants survive while others succumb to drought?[J].New Phytologist,2008,178(4):719-739.
    [24]刘淑明,孙佳乾,邓振义,等.干旱胁迫对花椒不同品种根系生长及水分利用的影响[J].林业科学,2013,49(12):30-35.[Liu Shuming,Sun Jiaqian,Deng Zhenyi,et al.Effects of drought stress on the root morphology and water use efficiency of Zanthoxylum bungeanum[J].Scientia Silvae Sinicae,2013,49(12):30-35.]
    [25]张仁和,薛吉全,浦军,等.干旱胁迫对玉米苗期植株生长和光合特性的影响[J].作物学报,2011,37(3):521-528.[Zhang Renhe,Xue Jiquan,Pu Jun,et al.Influence of drought stress on plant growth and photosynthetic traits in maize seedlings[J].Acta Agronomica Sinica,2011,37(3):521-528.]
    [26]李永洁,李进,徐萍,等.黑果枸杞幼苗对干旱胁迫的生理响应[J].干旱区研究,2014,31(4):756-762.[Li Yongjie,Li Jin,Xu Ping,et al.Physiological responses of Lycium ruthenicum Murr.seedlings to drought stress[J].Arid Zone Research,2014,31(4):756-762.]
    [27]Yoshimura K,Masuda A,Kuwano M,et al.Programmed proteome response for drought avoidance/tolerance in the root of a C3xerophyte(wild watermelon)under water deficits[J].Plant Cell Physiology,2008,49(2):226-241.
    [28]Sevanto S.Phloem transport and drought[J].Journal of Experimental Botany,2014,65(7):1 751-1 759.
    [29]董彦红,刘彬彬,张旭,等.黄瓜幼苗非结构性碳水化合物代谢对干旱胁迫与CO2倍增的响应[J].应用生态学报,2015,26(1):53-60.[Dong Yanhong,Liu Binbin,Zhang Xu,et al.Responses of non-structural carbohydrate metabolism of cucumber seedlings to drought stress and doubled CO2concentration[J].Chinese Journal of Applied Ecology,2015,26(1):53-60.]
    [30]赵超,王海燕,刘美珍,等.干旱胁迫下木薯茎杆可溶性糖、淀粉及相关酶的代谢规律[J].植物生理学报,2017,53(5):795-806.[Zhao Chao,Wang Haiyan,Liu Meizhen,et al.Effect of drought on the contents of soluble sugars,starch and enzyme activities in cassava stem[J].Plant Physiology Journal,2017,53(5):795-806.]
    [31]Nardini A,Casolo V,Dal Borgo A,et al.Rooting depth,water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought[J].Plant Cell&Environment,2015,39(3):618-627.
    [32]Mcdowell N G,Sevanto S.The mechanisms of carbon starvation:How,when,or does it even occur at all?[J].New Phytologist,2010,186(2):264-266.
    [33]Wiley E,Helliker B.A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth[J].New Phytologist,2012,195(2):285-289.
    [34]Piper F I,Fajardo A,Hoch G.Single-provenance mature conifers show higher non-structural carbohydrate storage and reduced growth in a drier location[J].Tree Physiology,2017,37(8):1-10.
    [35]Sala A,Woodruff D R,Meinzer F C.Carbon dynamics in trees:Feast or famine?[J].Tree Physiology,2012,32(6):764-775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700