用户名: 密码: 验证码:
基于“双冒泡法”的SAR影像冰山识别
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Iceberg Identification From SAR Image Based on “Double Bubbling Method”
  • 作者:舒苏 ; 柯长青 ; 周兴华 ; 唐秋华 ; 汪献义 ; 李海丽
  • 英文作者:SHU Su;KE Chang-qing;ZHOU Xing-hua;TANG Qiu-hua;WANG Xian-yi;LI Hai-li;School of Geographic and Oceanographic Sciences,Nanjing University;First Institute of Oceanography,MNR;School of Engineering and Technology,Northeast Forestry University;
  • 关键词:双冒泡法 ; SAR ; 冰山识别 ; 边界 ; 像元
  • 英文关键词:Double Bubbling Method;;SAR;;iceberg identification;;boundary;;pixel
  • 中文刊名:海洋科学进展
  • 英文刊名:Advances in Marine Science
  • 机构:南京大学地理与海洋科学学院;自然资源部第一海洋研究所;东北林业大学工程技术学院;
  • 出版日期:2019-01-15
  • 出版单位:海洋科学进展
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目——冰雷达与卫星测高协同的南极冰下湖遥感识别研究(41371391);; 国家重点研发计划项目——海洋气候数据集生成与分析(2016YFA0600102)
  • 语种:中文;
  • 页:96-105
  • 页数:10
  • CN:37-1387/P
  • ISSN:1671-6647
  • 分类号:P343.63
摘要
利用威德尔海区域2016年的Sentinel-1ASAR影像数据,采用"双冒泡法"的sigma-on-mu探测器探测冰山边缘区域,并通过对边缘像元进行交换排序和凸显最大像元的方式识别冰山。以人工识别法为基础,通过与自动识别法的对比,定量地分析了"双冒泡法"的识别偏差。研究结果表明,"双冒泡法"识别的冰山线性尺寸和面积等信息中纵横向最大长度分别为24.52km和11.16km;面积为220.833 6km2;单体识别偏差率为2.87%,低于自动识别法(7.5%);平均偏差率为2.48%,亦低于自动识别法(7.27%)。同时,基于"双冒泡法",提出了较小冰山边界的手动分离法(像元≤100),与自动识别方法相比,该方法的手动分离以具体的像元边界为基准,提高了对较小冰山的识别精度。
        The sigma-on-mu detector of the " Double Bubbling Method" was applied to the Sentinel-1 ASAR image of the Weddell Sea in 2016,to detect the iceberg edge areas,and then the iceberg was identified through exchanging the edge pixels and highlighting the largest pixels.The identification bias was quantitatively analyzed by comparison with the automatic identification method.The results show that the longitudinal and lateral lengths of the iceberg identified by the " Double Bubbling Method" are 24.52 km and11.16 km,respectively,with the area of 220.833 6 km2.The single and average identification deviation rates are 2.87%and 2.48%,respectively,which are lower than those of the automatic identification method(7.5%and 7.27%).Based on the " Double Bubbling Method",a manual separation method for small iceberg boundaries(pixel number less than 100)was proposed,compared with the automatic recognition method,the manual separation of the method is based on the specific pixel boundary,which improves the identification accuracy of the smaller icebergs.
引文
[1] ORHEIM O.Antarctic icebergs—production,distribution and disintegration[J].Annals of Glaciology,1988,11:205.
    [2] ZHANG M J,WANG S J,LI Z Q,et al.Variation of glacier area in China against the warming in the past 50years[J].Acta Geographica Sinica,2011,66(9):1155-1165.张明军,王圣杰,李忠勤,等.近50年气候变化背景下中国冰川面积状况分析[J].地理学报,2011,66(9):1155-1165.
    [3] SUN H Q,LI C H,ZHANG Z G.Study on the polar sea ice drift based on remote sensing image analysis[J].Journal of Ocean Technology,2015,34(1):10-14.孙鹤泉,李春花,张志刚.基于遥感图像分析的极区海冰漂移研究[J].海洋技术学报,2015,34(1):10-14.
    [4] BIAN L G,WANG J Z,SUN Y L,et al.Sea ice drifting and atmospheric processes over the central Arctic Ocean[J].Haiyang Xuebao,2014,36(10):48-55.卞林根,王继志,孙玉龙,等.北冰洋中心区海冰漂流与大气过程[J].海洋学报,2014,36(10):48-55.
    [5] XIE S M,WEI L X,HAO C J,et al.Change variation of the Antarctic sea ice and shelf ice[J].Haiyang Xuebao,2003,25(3):32-46.解思梅,魏立新,郝春江,等.南极海冰和陆架冰的变化特征[J].海洋学报,2003,25(3):32-46.
    [6] WU C X,LIU S J,TIAN Y X,et al.Change analysis of three major antarctic ice shelves based on Multi-source remote sensing data[J].Advances in Earth Science,2016,31(2):206-212.吴晨曦,刘世杰,田一翔,等.基于多源遥感数据的南极三大冰架前端变化分析[J].地球科学进展,2016,31(2):206-212.
    [7] KRISTENSEN M.Iceberg calving and deterioration in Antarctica[J].Progress in Physical Geography,1983,7(3):313-328.
    [8] ANDERSSON L E,SCIBILIA F,IMSLAND L.An estimation-forecast set-up for iceberg drift prediction[J].Cold Regions Science&Technology,2016,131:88-107.
    [9] PETERS M E,BLANKENSHIP D D,SMITH D E,et al.The distribution and classification of bottom crevasses from radar sounding of a large Tabular Iceberg[J].IEEE Geoscience&Remote Sensing Letters,2007,4(1):142-146.
    [10] JI S Y,GU Z Q,WANG A L,et al.Analysis of drifting characteristics of the sea ice based on continuous marine radar monitoring on the oil-gas offshore platform[J].Marine Science Bulletin,2016,35(3):280-285.季顺迎,顾纵棋,王安良,等.基于海洋油气平台上雷达连续监测的海冰漂移特性分析[J].海洋通报,35(3):280-285.
    [11] ARDHUIN F G,EZRATY R.Enhanced Arctic sea ice drift estimation merging radiometer and scatterometer data[J].IEEE Transactions on Geoscience&Remote Sensing,2012,50(7):2639-2648.
    [12] JACKA T H,GILES A B.Antarctic iceberg distribution and dissolution from ship-based observations[J].Journal of Glaciology,2007,53(182):341-356.
    [13] ROMANOV Y A,ROMANOVA N A,ROMANOV P.Shape and size of Antarctic icebergs derived from ship observation data[J].Antarctic Science,2012,24(1):77-87.
    [14] STUART K M,LONG D G.Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer[J].Deep Sea Research Part II Topical Studies in Oceanography,2011,58(11-12):1285-1300.
    [15] TOURNADRE J,WHITMER K,GIRARD-ARDHUIN F.Iceberg detection in open water by altimeter waveform analysis[J].Journal of Geophysical Research Atmospheres,2008,113(C8):2092-2112.
    [16] TOURNADRE J,ARDHUIN G F,LEGRSY B.Antarctic icebergs distributions,2002—2010[J].Journal of Geophysical Research Atmospheres,2012,117(5):C05004.
    [17] SILVA T A M,BIGG G R.Computer-based identification and tracking of Antarctic icebergs in SAR images[J].Remote Sensing of Environment,2005,94(3):287-297.
    [18] WESCHE C,DIERKING W.Near-coastal circum-Antarctic iceberg size distributions determined from synthetic aperture radar images[J].Remote Sensing of Environment,2015,156(156):561-569.
    [19] YOUNG N W,TURNER D,HYLAND G,et al.Near coastal iceberg distributions in east Antarctica,50°E—145°E[J].Annals of Glaciology,1998,27:68-74.
    [20] WILLIS C J,MACKLIN J T,PARTINGTON K C,et al.Iceberg detection using ERS-1synthetic aperture radar[J].International Journal of Remote Sensing,1996,17(9):1777-1795.
    [21] WILLIAMS R N,REES W G,YOUNG N W.A technique for the identification and analysis of icebergs in synthetic aperture radar images of Antarctica[J].International Journal of Remote Sensing,1999,20(15/16):3183-3199.
    [22] SEPHTON A J,BROWN L M J,MACKLIN J T,et al.Segmentation of synthetic-aperture radar imagery of sea ice[J].International Journal of Remote Sensing,1994,15(4):803-825.
    [23] FJRTOFT R,GAUDIN J M,POURTHIE N,et al.KaRIn on SWOT:Characteristics of near-nadir Ka-Band interferometric SAR imagery[J].IEEE Transactions on Geoscience&Remote Sensing,2013,52(4):2172-2185.
    [24] ODDY C J,RYE A J.Segmentation of SAR images using a local similarity rule[J].Pattern Recognition Letters,1983,5(1):443-449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700