用户名: 密码: 验证码:
2018年石佛寺水库不同水深处香蒲生长状况及其影响因素研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth Status of Typha angustifolia at Different Water Depths and Their Influence Factors in Shifosi Reservoir in 2018
  • 作者:康思宇 ; 周林
  • 英文作者:KANG Siyu;ZHOU Linfei;College of Water Conservancy Shenyang Agriculture University;
  • 关键词:香蒲 ; 生长状况 ; 水深 ; 水质 ; 石佛寺水库
  • 英文关键词:Typha angustifolia;;growth status;;water depths;;water quality;;Shifosi Reservoir
  • 中文刊名:湿地科学
  • 英文刊名:Wetland Science
  • 机构:沈阳农业大学水利学院;
  • 出版日期:2019-06-15
  • 出版单位:湿地科学
  • 年:2019
  • 期:03
  • 基金:辽宁省水利科学技术项目(20160146);; 辽宁省科学事业公益研究基金项目(2015003006)资助
  • 语种:中文;
  • 页:101-106
  • 页数:6
  • CN:22-1349/P
  • ISSN:1672-5948
  • 分类号:X524;Q945
摘要
为了研究石佛寺水库不同水深处香蒲的生长状况,于2018年6月30日、7月30日、8月29日和9月28日,采集石佛寺水库10 cm、20 cm、30 cm、40 cm、50 cm、60 cm和70 cm水深处的香蒲样品和各处5 cm深度的水样,计算香蒲种群密度,测量香蒲植株高度、基部直径、叶长、叶宽和计数分蘖数,称量香蒲鲜质量和干质量,测定香蒲叶片的SPAD值,并对各处水样的水质指标进行测定,分析不同水深和水质指标对香蒲生长状况的影响。研究结果表明,在不同水深处,香蒲各生长指标差异显著;在水深为50 cm处,香蒲的生长状况最优(8月29日香蒲种群密度为45 ind./m2,香蒲第4片叶片的叶宽为19.84 mm,香蒲基部直径为39.91 mm;6月30日、7月30日和8月29日香蒲分蘖数为每株分蘖出11株,7月30日香蒲叶片的SPAD值为58.99),香蒲具有较强的生存能力和繁殖能力;7月为香蒲生长最快的时期;4个采样日石佛寺水库5 cm深度水体pH为6.89~7.98,呈弱碱性;随着水深的加深,5 cm深度水样中的溶解氧、硝态氮和亚硝态氮含量逐渐减小,总氮和氨氮含量增大,总磷含量小幅度波动变化;水中的氨氮含量、溶解氧含量、硝态氮含量、亚硝态氮含量和水深是影响香蒲生长的主要因素。
        In order to study the growth status of Typha angustifolia at different water depths in Shifosi Reservoir,Typha angustifolia samples at water depths of 10 cm, 20 cm, 30 cm, 40 cm, 50 cm, 60 cm and 70 cm were selected on June 30, July 30, August 29, and September 28, 2018, and water samples of 5 cm depth at different water depths were collected simultaneously. Population density of Typha angustifolia was calculated, and plant height, base diameter, leaf length, leaf width and tiller number were measured. Fresh quality and dry quality were weighed, and SPAD values of leaves were determined. The water quality indexes were determined. The effects of different water depths and water quality factors on the growth index were discussed. The results showed that the growth indexes of Typha angustifolia were different at different water depths. At the water depth was 50 cm, the growth status of Typha angustifolia was the best(the population density of Typha angustifolia was 45 ind./m2, the leaf width of the 4 th leaf of Typha angustifolia was 19.84 mm, and the diameter of the base of Typha angustifolia was 39.91 mm on August 29; the tiller number of Typha angustifolia was 11 on June 30, July 30 and August 29, and the SPAD value of leaves was 58.99 on July 30),which had strong survival ability and proliferation ability. July was the period with the fastest growth rate of Typha angustifolia. The pH of water samples at 5 cm depth in Shifosi Reservoir was 6.89-7.98 on the 4 sampling days. With the water depth increased, dissolved oxygen, nitrate nitrogen and nitrite nitrogen contents in the water samples at 5 cm depth gradually decreased, total nitrogen and ammonia nitrogen contents increased, total phosphorus content fluctuated slightly. Ammonia nitrogen content, dissolved oxygen content,nitrate nitrogen content, nitrite nitrogen content and water depth were the main limiting factors for the growth of Typha angustifolia in Shifosi Reservoir.
引文
[1]Dwire K A, Kauffman J B, Baham J E. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows[J]. Wetlands, 2006, 2266(1):131-146.
    [2]Wang L, Hu J M, Song C C, et al. Effects of water level on the rhizomatic germination and growth of typical wetland plants in Sanjiang plain[J]. Chinese Journal of Applied Ecology, 2007, 18(11):2432-2437.
    [3]郝洪波.优良水生观赏植物:香蒲[J].农业科技通讯, 2004(11):25.
    [4]钱鸣飞,李勇,黄勇.芦苇和香蒲人工湿地系统净化微污染河水效果比较[J].工业用水与废水, 2008, 3399(6):55-58.
    [5]刘霄,唐婷芳子,黄岁樑,等. 4种湿地植物的生长特性和污水净化效果研究[J].云南农业大学学报, 2013, 2288(3):392-399.
    [6]孙焕顷,范玉贞.香蒲对水体的净化效应[J].安徽农业科学,2007, 3355(21):3576-6582.
    [7]王凤永,郭朝晖,苗旭峰,等.东方香蒲对重度污染土壤中As、Cd、Pb的耐性与累积特征[J].农业环境科学学报, 2011, 3300(10):1966-1971.
    [8]Nilratnisakorn S, Thiravetyan P, Nakbanpote W. Synthetic reactive dye wastewater treatment by narrow-leaved cattails(Typha angustifolia Linn):effects of dye, salinity and metals[J]. Science of the Total Environment, 2007, 38844(1-3):67-76.
    [9]闫功双.石佛寺人工湿地环境效应与生态管理对策[J].节水灌溉, 2014(12):57-59.
    [10]许秀丽,张奇,李云良.鄱阳湖洲滩芦苇种群特征及其与淹水深度和地下水埋深的关系[J].湿地科学, 2014, 1122(6):714-722.
    [11]Hejny S, Hroudova Z. Plant adaptations to shallow water habitats[J]. Archiv fuer Hydrobiologie-Advances in Limnology, 1987(27):157-166.
    [12]袁桂香.水位梯度下挺水植物生存策略研究[D].湖南:湖南农业大学, 2010.
    [13]黎磊,周道玮,盛连喜.密度制约决定的植物生物量分配格局[J].生态学杂志, 2011, 3300(8):1579-1589.
    [14]Grime J P. Plant Strategies and Vegetation Processes[M]. London:Willey, 1979.
    [15]吴晓东,王国祥,李振国,等.干旱胁迫对香蒲生长和叶绿素荧光参数的影响[J].生态与农村环境学报, 2012, 2288(1):103-107.
    [16]郭士林.水位变化对水平潜流人工湿地氮素迁移转化的影响[D].上海:东华大学, 2017.
    [17]牛东玲,王启基.盐碱地治理研究进展[J].土壤通报, 2002, 33(6):449-455.
    [18]Li R, Shi F, Fukudab K. Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte Spartina alterniflora(Poaceae)[J]. South African Journal of Botany, 2010, 776(2):380-387.
    [19]胡霭堂.植物营养学[M].北京:中国农业大学出版社, 2000:91-104.
    [20]Shi D C, Sheng Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors[J]. Environmental and Experimental Botany, 2005, 54(1):8-21.
    [21]Randall C W, Buth D. Nitrite build-up in activated sludge resulting from temperature effects[J]. Journal Water Pollution Control Federation, 1984, 5566(9):1039-1044.
    [22]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社, 1998.
    [23]张艳峰.金属耐性植物内生细菌对油菜耐受与富集重金属的影响及其机制研究[D].南京:南京农业大学, 2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700