用户名: 密码: 验证码:
生物质炭对沉积物中有机污染物的吸附固定作用机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption and Immobilization of Organic Pollutants in Sediment by Biochars
  • 作者:周岩 ; 杨舒然 ; 孟晓东 ; 许鸣杨 ; 张博暄 ; 郭晓春 ; 付国玲
  • 英文作者:ZHOU Yanmei;YANG Shuran;MENG Xiaodong;XU Mingyang;ZHANG Boxuan;GUO Xiaochun;FU Guoling;Department of Municipal and Environmental Engineering,School of Civil Engineering,Beijing Jiaotong University;Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard,Beijing Jiaotong University;Northeast Pharmaceutical Co.,Ltd.;
  • 关键词:生物质炭 ; 污染沉积物 ; 多环芳烃 ; 苯系物 ; 酞酸酯
  • 英文关键词:biochar;;contaminated sediment;;polycyclic aromatic hydrocarbons;;benzene series;;phthalic esters
  • 中文刊名:环境科学研究
  • 英文刊名:Research of Environmental Sciences
  • 机构:北京交通大学土木建筑工程学院市政与环境工程系;北京交通大学水中典型污染物控制与水质保障北京市重点实验室;东北制药集团股份有限责任公司;
  • 出版日期:2018-11-07 14:01
  • 出版单位:环境科学研究
  • 年:2019
  • 期:01
  • 基金:国家水体污染控制与治理科技重大专项(No.2012ZX07202-002);; 大学生创新训练项目(No.170130051,170130061)~~
  • 语种:中文;
  • 页:41-48
  • 页数:8
  • CN:11-1827/X
  • ISSN:1001-6929
  • 分类号:X52
摘要
不同来源生物质炭表面和理化性质差别很大,对沉积物中有机污染物的吸附固定不同.以3种不同来源生物质炭(椰壳粉末、草木灰和聊城电厂灰)为研究对象,应用被动采样技术监测治理过程中污染物浓度的变化,揭示生物质炭理化性质及其与吸附固定效果之间的关系.结果表明:(1)3种生物质炭粒径相差不大,但椰克粉末的BET比表面积比草木灰和聊城电厂灰高2个数量级,孔隙结构发达.(2)吸附固定沉积物中有机污染物的静态模拟试验结果显示,椰克粉末对3类有机物(多环芳烃、苯系物和酞酸酯)的吸附固定作用均很强,投加10个月,沉积物孔隙水中3类有机物的质量浓度降低92. 7%以上,与其属于非极性吸附剂、BET比表面积大、孔隙结构发达有关;草木灰和聊城电厂灰对酞酸酯的吸附固定作用较弱,分别为62. 5%和59. 6%,与其表面积小、孔隙结构不发达有关.(3)生物质炭吸附固定沉积物中有机污染物的动力学研究结果显示,草木灰和聊城电厂灰对酞酸酯的吸附固定作用能很快达到平衡,也与其BET比表面积小、孔隙结构不发达相关.研究显示,生物质炭的理化性质(如BET比表面积、孔隙结构等)是影响有机物污染沉积物治理效果的主要因素.
        The different source biochars have different surface and physicochemical properties,and their effects on the treatment of organic polluted sediment is different. In this study,3 different source biochars( coconut shell powder activated carbon,plant ash,and biomass power plant ash) were studied to reveal the relationship between the physicochemical properties of biochars and their treatment effects on organic contaminated sediment. The three biochars had little difference in particle size,but the surface area of the activated carbon was 2orders of magnitude higher than that of the plant ash and the power plant ash,and with well-developed pore structure. Laboratory static simulation experiment of in-situ biochar amendment for contaminated sediment showed that the activated carbon strongly adsorbed and stabilized 3 kinds of organic chemicals( polycyclic aromatic hydrocarbons,benzene series and phthalic esters) in the sediment. After 10 months of treatment,the concentrations of the 3 pollutants in sediment pore water decreased by more than 92. 7%. This might be consistent with a nonpolar adsorbent,large surface area,and well-developed pore structure of activated carbon. The stabilization effects of the plant ash and the biomass power plant ash on phthalic esters were moderate and the reduction rates of pore water concentration were 62. 5% and59. 6%,presumably due to their small surface area and underdeveloped pore structure. The kinetics of biochar treatment of the contaminated sediments showed that the adsorption and stabilization of the plant ash and the biomass power plant ash on PAEs could quickly reach equilibrium,also due to their small surface area and the underdevelopment of the pore structure. The results indicated that the effectiveness of the treatment was not only related to the physicochemical properties of the biochars but also related to the physicochemical properties of pollutants.
引文
[1] BECKINGHAM B,GHOSH U. Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments[J].Environmental Science&Technology,2011,45:10567-10574.
    [2] BEESLEY L,MORENO-JIMENEZ E,GOMEZ-EYLES J,et al. A review of biochars'potential role in the remediation,revegetation and restoration of contaminated soils[J]. Environmental Pollution,2011,159(12):3269-3282.
    [3] CHOI Y,CHO Y,GALA W,et al. Measurement and modeling of activated carbon performance for the sequestration of parent-and alkylated-polycyclic aromatic hydrocarbons in petroleum-impacted sediments[J]. Environmental Science&Technology,2012,47:1024-1032.
    [4] HALE S,HANLEY K,LEHMANN J,et al. Effects of chemical,biological,and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar[J].Environmental Science&Technology,2011,45:10445-10453.
    [5] FAGERVOLD S,CHAI Y,DAVIS J,et al. Bioaccumulation of polychlorinated dibenzo-p-dioxins/dibenzofurans in E. fetida from floodplain soils and the effect of activated carbon amendment[J].Environmental Science&Technology,2010,44:5546-5552.
    [6] LIN M L,CUI F Y,YIN X T,et al.Analysis of powdered activated carbon adsorption process in coping with sudden pollution of chlorobenzene in raw water[J]. Journal of Civil Architectural&Environmental Engineering,2011,33(5):132-136.
    [7] UPALGHOSH,RICHARD G,GERARDCORNELISSEN,et al. Insitu sorbent amendments:a new direction in contaminated sediment management[J]. Environmental Science&Technology,2011,45:1163-1168
    [8] BARBARA B,UPALGHOSH. Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments[J].Environmental Science&Technology,2011,45(24):10567-10574.
    [9] CORNELISSEN G,KRUSA M,BREEDVELD G,et al.Remediation of contaminated marine sediment using thin-layer capping with activated carbon:a field experiment in Trondheim Harbor,Norway[J]. Environmental Science&Technology,2011,45(14):6110-6116.
    [10] BECKINGHAM B,GHOSH U. Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments[J].Environmental Science&Technology,2011,45(24):10567-10574.
    [11] CHO Y,GHOSH U,KENNEDY A,et al. Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment[J]. Environmental Science&Technology,2009,43(10):3815-3823.
    [12]杨雪贞,樊曙先,汤莉莉,等,外秦淮河疏浚后底泥中多环芳烃分布特征及其变化[J].环境科学研究,2008,21(4):114-118.YANG Xuezhen,FAN Shuxian,TANG Lili,et al. Characterization and change of polycyclic aromatic hydrocarbons in sediment from Waiqinhuai River[J]. Research of Environmental Sciences,2008,21(4):114-118.
    [13] EEK E,CORNELISSEN G,BREEDVELD G.Field measurement of diffusional mass transfer of HOCs at the sediment-water interface[J]. Environmental Science&Technology,2010,44(17):6752-6759.
    [14]于尚云,周岩梅.DOM对被动采样技术的影响与应用[J].环境科学,2015,36(8):2895-2899.YU Shanyun,ZHOU Yanmei.Influence of natural dissolved organic matter on the passive sampling technique and its application[J].Environmental Science,2015,36(8):2895-2899.
    [15] LAMPERT D,SARCHET W,REIBLE D,et al. Assessing the effectiveness of thin-layer sand caps for contaminated sediment management through passive sampling[J]. Environmental Science&Technology,2011,45(19):8437-8443.
    [16] ADAMS R. Sediment-water exchange of polycyclic aromatic hydrocarbons in the lower hudson estuary[M]. Massachusetts:Cambridge Press,2000:35-46.
    [17]吴前飞,周岩梅,杨永哲.浅层平铺炭质吸附剂治理多氯联苯污染底泥的有效性评价研究[J].环境科学学报,2013,33(10):2750-2755.WU Qianfei,ZHOU Yanmei,YANG Yongzhen. Evaluation of the effectiveness of flat carbon adsorbent for treating PCBS contaminated sediment[J]. Journal of Environmental Science,2013,33(10):2750-2755.
    [18]范娟.应用LDPE膜被动采样技术监测分析辽河流域POPs的污染状况[D].北京:北京交通大学,2015:10.
    [19]王树功,谢镜明,吴群河,等,小东江底泥中挥发酚的垂向分布研究[J].环境科学研究,2001,14(5):17-19.WANG Shugong,XIE Jingming,WU Qunhe,et al. The study of vertical allocation of volatile phenol in Xiaodong River's sediments[J].Research of Environmental Sciences,2001,14(5):17-19.
    [20]王晨.典型土壤中多环芳烃的赋存形态及影响因素初探[D].杭州:浙江大学,2015.
    [21]王逊.浑河沉积物中持久有机污染物的生物可利用性测定方法对比研究以及风险评价[D].北京:北京交通大学,2015.
    [22] XIAO Yang,YANG Chunmei,GENG Xuesong,et al.Characteristics of particulate-bound polycyclic aromatic hydrocarbons emitted from industrial grade biomass boilers[J]. Journal of Environmental Sciences,2016,40(2):28-34.
    [23]韩旭,张泽凯,陈银飞.椰壳活性炭吸附消除VOCs[J].环境工程学报,2012,6(3):961-965.HAN Xu,ZHANG Zekai,CHEN Yinfei.Adsorption of coconut shell activated carbon eliminates VOCs[J]. Journal of Environmental Engineering,2012,6(3):961-965.
    [24]邓志华,刘佩琪,邓清,等.椰壳活性炭对水中重金属离子的吸附研究[J].化工新型材料,2018,46(3):273-276.
    [25]郅二铨.南沙河沉积物中有机污染物的分布及对邻苯二甲酸二甲酯的吸附/解吸特性研究[D].北京:北京交通大学,2010.
    [26]毛世慧,郭新超,周岩梅,等.四氯联苯在草木灰上的吸附/解吸特征及吸附动力学研究[J].环境科学与技术,2013,36(6):42-46.MAO Shihui,GUO Xinchao,ZHOU Yanmei,et al. Study on adsorption/desorption characteristics and adsorption kinetics of tetrachlorobiphenyl on wood ashes[J]. Environmental Science&Technology(China),2013,36(6):42-46.
    [27]张琼,周岩梅,孙素霞,等.农药西维因及敌草隆在草木灰上的吸附行为研究[J].中国环境科学,2012,32(3):529-534.ZHANG Qiong,ZHOU Yanmei,SUN Suxia,et al. Study on the adsorption behavior of civein and diuron on wood ash[J]. Chinese Environmental Science,2012,32(3):529-534.
    [28]周岩梅,张琼,孙素霞,等.敌草隆在市售草木灰及生物质电厂灰上的吸附特性研究[J].环境科学学报,2012,32(7):1612-1619.ZHOU Yanmei,ZHANG Qiong,SUN Suxia,et al. Adsorption characteristics of diuron on morchant biomass ash and biomass power plant ashes[J]. Acta Scientiae Circumstantiae,2012,32(7):1612-1619.
    [29]王代长,孙志成,蒋新,等.酸性条件下可变电荷土壤对铜吸附动力学特征[J].农业环境科学学报,2009,28(2):275-279.WANG Daizhang,SUN Zhicheng,JIANG Xin,et al. Kinetics of Cu adsorption by selected variable charge soils under acidic conditions[J].Journal of Agro-Environment Science,2009,28(2):275-279.
    [30]孟晓东.炭质吸附剂原位治理污染底泥技术研究[D].北京:北京交通大学,2016:10.
    [31]毕丽姣.生物质炭修复剂平铺式治理污染底泥技术研究[D].北京:北京交通大学,2016:10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700