用户名: 密码: 验证码:
水华束丝藻对汞的吸附-解吸特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sorption and Desorption Characteristics of Hg~(2+) by Aphanizomenon flosaquae
  • 作者:孙荣国 ; 莫雅斐 ; 金林 ; 李秋华
  • 英文作者:SUN Rongguo;MO Yafei;JIN Lin;LI Qiuhua;School of Chemistry and Material,Guizhou Normal University;State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences;
  • 关键词:水华束丝藻 ; ; 生物吸附 ; 等温吸附模型
  • 英文关键词:Aphanizomenon flosaquae;;mercury;;bio-adsorption;;isotherm models
  • 中文刊名:地球与环境
  • 英文刊名:Earth and Environment
  • 机构:贵州师范大学化学与材料科学学院;中国科学院地球化学研究所环境地球化学国家重点实验室;
  • 出版日期:2019-05-13 07:04
  • 出版单位:地球与环境
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金(41563012);; 中国博士后科学基金(2017M613005);; 贵州省科技厅联合基金(黔科合LH字[2017]7334);; 贵州省教育厅青年科技人才成长项目(黔教合KY[2016]135);; 贵州师范大学博士科研启动基金(2014)
  • 语种:中文;
  • 页:151-156
  • 页数:6
  • CN:52-1139/P
  • ISSN:1672-9250
  • 分类号:X52;X173
摘要
通过室内模拟实验,探究不同丰度的活、死水华束丝藻对Hg~(2+)的吸附动力学特征和等温吸附模型以及解吸特征。结果表明,水华束丝藻对Hg~(2+)有较好的吸附效果,能在短时间内吸附大量Hg~(2+),120 min左右达到吸附平衡,且活藻对Hg~(2+)的吸附效果比死藻好;活藻和死藻吸附Hg~(2+)的动力学过程符合准一级、准二级动力学模型,且准二级动力学模型拟合效果更好;活、死水华束丝藻对Hg~(2+)的吸附分别符合Langmuir模型、D-R模型,最大吸附量分别为2. 07×10~(-2)ng/(106 cells)、3. 56×10~(-2)ng/(10~6 cells);水华束丝藻对Hg~(2+)的单位吸附量随着藻丰度的增加而减少,吸附总量随着藻丰度的增加而增加。反应初期(0~5 min),活、死水华束丝藻对Hg~(2+)进行生物吸附,吸附速度快且效率高;随后活藻依靠新陈代谢将Hg~(2+)转移至细胞内进行生物富集,因而活藻的单位吸附量高于死藻。活藻和死藻对Hg~(2+)的解吸量随藻丰度的增加而增加,且死藻变化更明显。
        Laboratory simulation experiments were conducted to investigate kinetics and isotherm patterns of sorption and desorption of Hg~(2+) by a biosorption agent,Aphanizomenon flosaquae,under different conditions,e. g. live or dead,and abundance. The results showed that algae,Aphanizomenon flosaquae,is a good sorbent for Hg~(2+) and can uptake a large amount of Hg~(2+) in a short time,sorption equilibria can be reached in about 120 minutes. The sorption ability of Hg~(2+) on live algae is much higher than that of dead algae. The sorption kinetics of Hg~(2+) by algae can be described with either quasi-first-order or quasi-second-order kinetic model. The quasi-secondary kinetic model showed a better fitting result. The sorption isotherms of Hg~(2+) by live algae and dead algae are consistent with the Langmuir model. The maximum sorption capacity of Hg~(2+) by live algae and dead algae was 2. 07×10~(-2) ng/(10~6 cells) and 3. 56×10~(-2) ng/( 10~6 cells),respectively. The concentration of Hg~(2+) on algae decreased while the total uptake amount of Hg~(2+) on algae increased as the abundance of algae increased. Both live and dead algae sorbed Hg~(2+) quickly and effectively within 5 min through biosorption,but the sorption amount of live algae was higher than that of dead algae since live algae can transfer Hg~(2+) into algae cell. The desorption amount of Hg~(2+) from live and dead algae increased with the increase of algae abundance,and this trend was more significant for dead algae.
引文
[1]冯新斌等著.乌江流域水库汞的生物地球化学过程及环境效应[M].北京:科学出版社,2015:1-378.
    [2] Liu G,Cai Y,O’Driscoll N. Environmental chemistry and toxicology of mercury[M]. Hoboken:John Wiley&Sons,Inc.,2012:1-600.
    [3] Harris H H,Pickering I J,George G N. The chemical form of mercury in fish[J]. Science,2003,301(5637):1203.
    [4] Schartup A T,Qureshi A,Dassuncao C,et al. A model for methylmercury uptake and trophic transfer by marine plankton[J]. Environmental Science&Technology,2017,52(2):654-662.
    [5] Morel F M M,Kraepiel A M L,Amyot M. The chemical cycle and bioaccumulation of mercury[J]. Annual Review of Ecology&Systematics,1998,29(29):543-566.
    [6] Mergler D,Anderson H A,Chan L H,et al. Methylmercury exposure and health effects in humans:A worldwide concern[J]. Ambio,2007,36(1):3-11.
    [7] Aksu Z,Egretli G,Kutsal T. A comparative study for the biosorption characteristics of chromium(VI)on ca-alginate,agarose and immobilized cvulgaris in a continuous packed bed column[J]. Environmental Letters,1999,34(2):295-316.
    [8] Atkinson B W,Bux F,Kasan H C. Considerations for application of biosorption technology to remediate metal contaminated industrial effluents[J]. Water South Amerca,1998,24(2):129-135.
    [9]黄慧. CPB改性沸石对低浓度含汞废水吸附解吸特性研究[D].重庆:西南大学,2013.
    [10]李攀荣,邹长伟,万金保,等.微藻在废水处理中的应用研究[J].工业水处理,2016,36(5):5-9.
    [11]孙荣国,范丽,尹晓刚,等.香蕉皮对汞的吸附特征研究[J].地球与环境,2018,46(5):498-504.
    [12]胡琴,曹艳,张喆倩,等.不同微藻吸附重金属离子Cd2+的实验研究[J].上海环境科学,2017(4):179-184.
    [13]陆开形,唐建军,蒋德安.藻类富集重金属的特点及其应用展望[J].应用生态学报,2006,17(1):118-122.
    [14]金林,孙荣国,莫雅斐,等.椭圆小球藻对汞的吸附-解吸探究[J].地球与环境,2018,46(6):599-605.
    [15]申禹,李玲.天然水体中生物膜对磷的吸附动力学特征[J].环境科学学报,2013,33(4):1023-1027.
    [16] US EPA. Method 1631:Mercury in water by oxidation,purge and trap,and cold vapor atomic fluorescence spectrometry[S]. Washington,D C,2002.
    [17] Costa M,Liss P S. Photoreduction of mercury in sea water and its possible implications for Hg0air–sea fluxes[J]. Marine Chemistry,1999,68(1-2):87-95.
    [18]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003.
    [19]阴永光,李雁宾,蔡勇.汞的环境光化学[J].环境化学,2011,30(1):84-91.
    [20] Malik A. Metal bioremediation through growing cells[J]. Environment International,2004,30(2):261-278.
    [21] Monteiro C M,Castro P M,Malcata F X. Metal uptake by microalgae:Underlying mechanisms and practical applications[J]. Biotechnology Progress,2012,28(2):299-311.
    [22]郑蒙蒙,邵鲁泽,管幼青,等.藻类富集水体重金属的机理及应用[J].环境科技,2017(6):66-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700