用户名: 密码: 验证码:
沁水南部柿庄南区块3号煤层现今地应力特征及其与渗透率的关系研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristic of in-situ stress in No.3 coal seam of southern Shizhuang block,southern Qinshui basin,and its influence on the permeability
  • 作者:倪冬 ; 王延斌 ; 韩文龙 ; 张崇瑞 ; 王力
  • 英文作者:NI Dong;WANG Yanbin;HAN Wenlong;ZHANG Chongrui;WANG Li;College of Geoscience and Surveying Engineering,China University of Mining & Technology(Beijing);Jincheng Unit,China United Coalbed Methane Corporation,Ltd;
  • 关键词:沁水盆地柿庄南区块 ; 煤层地应力 ; 渗透率 ; 水力压裂 ; 构造叠加区 ; 煤层气
  • 英文关键词:southern Shizhuang;;in-situ stress;;permeability;;hydraulic fracturing;;tectonic superposition area;;coal bed gas
  • 中文刊名:河南理工大学学报(自然科学版)
  • 英文刊名:Journal of Henan Polytechnic University(Natural Science)
  • 机构:中国矿业大学(北京)地球科学与测绘工程学院;中联煤层气有限责任公司晋城分公司;
  • 出版日期:2018-11-16 15:38
  • 出版单位:河南理工大学学报(自然科学版)
  • 年:2019
  • 期:01
  • 基金:国家科技重大专项项目(2017ZX05064)
  • 语种:中文;
  • 页:73-80
  • 页数:8
  • CN:41-1384/N
  • ISSN:1673-9787
  • 分类号:P618.13
摘要
为了研究沁水盆地柿庄南区块3号煤层地应力特征,揭示地应力对渗透率的影响规律,根据研究区3号煤层形成后的古构造应力场特征,划分出煤层褶皱不同部位叠加区,采用水压致裂法和声波测井互相印证法计算出煤储层地应力,应用实测和地质强度指标(geological strength index,GSI)相结合的方法得出煤储层渗透率,对煤层现今地应力与埋深的关系进行回归分析,查明了地应力随埋深的变化特征,在此基础上总结了地应力对煤储层渗透率的影响规律。结果表明:研究区煤层地应力随埋深增加呈线性增大;在700 m以浅地区,σV>σH>σh,现今地应力状态为大地静力场; 700~900 m,σH≈σV≈σh,为准静水压力场; 900 m以深,σH>σV>σh,最大水平主应力起主导作用,具有大地动力场特征。对于同一构造部位,煤储层地应力与埋深相关性较好,呈负指数关系;不考虑多期构造叠加时,应力差与渗透率关系不明显,考虑构造分期后,同一叠加区其应力差与渗透率符合指数关系。
        In order to investigate distributions of in-situ stress in No. 3 coal seam of southern Shizhuang block,southern Qinshui basin and determine influences of the stress on permeability,the superposition area of the coal seam folds was divided based on characters of paleo tectonic stress field of No. 3 coal seam. Hydraulic fracturing method and acoustic logging were adopted to obtain the stress data. Coal reservoir permeability was obtained by using the measured and geological strength index( GSI). The regression analysis was carried out to find out relations between the present stress and depth of coal seam. The effect of the present stress on the permeability of coal reservoir was summarized. The results showed that the principal stress linearly increased with depth. When the burial depth of coal reservoir was lower than 700 m,the present stress state showed σV> σH>σh. The stress state was the static field. When the burial depth was between 700 and 900 m,the present stress showed σH≈σV≈σhand the stress state was quasi-hydrostatic. When the depth is more than 900 m,the present stress showed σH> σV> σh. The stress state was the static field and the maximum horizontal principal stress was dominant. For the same tectonic site,the coal present stress and buried depth had a good negative exponential relations. When there was no multi period structural superposition,the relations between present stress and permeability was not significant. While structural stage was considered,the relations between the stress difference and the permeability in the same superimposed area was exponential relation.
引文
[1]孟召平,田永东,李国富.沁水盆地南部煤储层渗透性与地应力之间关系和控制机理[J].自然科学进展,2009,19(10):1142-1148.MENG Z P,TIAN Y D,LI G F. The relationship between the permeability and the in-situ stress of the coal reservoir in the southern Qinshui basin and its control mechanism[J]. Progress in Natural Science,2009,19(10):1142-1148.
    [2]陶树,王延斌,汤达祯,等.沁水盆地南部煤层孔隙-裂隙系统及其对渗透率的贡献[J].高校地质学报,2012,18(3):522-527.TAO S,WANG Y B,TANG D Z,et al. Pore and fracture systems and their contribution to the permeability of coal reservoirs in southern Qinshui basin[J]. Geological Journal of China Universities,2012,18(3):522-527.
    [3]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003.FU X H,QIN Y. Theory and method for predicting permeability of coalbed methane reservoirs in multi-phase media[M]. Xuzhou:China University of Mining and Technology press,2003.
    [4]彭春洋,陈健,原晓珠,等.煤层气储层渗透性影响因素分析[J].煤,2011,20(5):38-42.PENG C Y,CHENG J,YUAN X Z,et al. Analysis on influence factors of permeability of coal bed gas reservoir[J]. Coal,2011,20(5):38-42.
    [5]彭苏萍,孟召平.矿井工程地质理论与实践[M].北京:地质出版社,2002.PENG S P,MENG Z P. Theory and practice of mine engineering geology[M]. Beijing:Geological Publishing House,2002.
    [6]逄思宇,贺小黑.地应力对煤层气勘探与开发的影响[J].中国矿业,2014,23(s1):173-177.PANG S Y,HE X H. The influence of geostress on the exploration and development of CBM[J]. Chinese Mining Industry,2014,23(s1):173-177.
    [7]叶建平,史保生.中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999,24(2):118-122.YE J P,SHI B S. Permeability of coal reservoir in China and its main influencing factors[J]. Joural of China Coal Geology,1999,24(2):118-122.
    [8]陈世达,汤达祯,陶树,等.沁南—郑庄区块深部煤层气“临界深度”探讨[J].煤炭学报,2016,41(12):3069-3075.CHEN S D,TANG D Z,TAO S,et al. Discussion about“critical depth”of deep coalbed methane in Zhengzhuang area,Qinshui basin[J]. Journal of China Coal Society,2016,41(12):3069-3075.
    [9]李勇,汤达祯,许浩,等.鄂尔多斯盆地柳林地区煤储层地应力场特征及其对裂缝的控制作用[J].煤炭学报,2014,39(s1):164-168.LI Y,TANG D Z,XU H,et al. Characteristic of in-situ stress field in Liulin area,Ordos basin and its control on coal fractures[J]. Journal of China Coal Society,2014,39(s1):164-168.
    [10]卫明明.沁水盆地南部高煤级煤构造变形及其对煤层气富集区渗透率的制约[D].昆明:昆明理工大学,2011.WEI M M. Structural deformation of high rank coal and its effect on permeability of coalbed methane enrichment area in the southern section of Qinshui basin[D]. Kunming:Kunming University of Science and Technology,2011.
    [11]李月,林玉祥,于腾飞.沁水盆地构造演化及其对游离气藏的控制作用[J].桂林理工大学学报,2011,31(4):481-487.LI Y,LIN Y X,YU T F. Tectonic evolution of Qinshui basin and its control on free gas reservoirs[J]. Journal of Guilin University of Technology,2011,31(4):481-487.
    [12]孟元库,汪新文,李波,等.华北克拉通中部沁水盆地热演化史与山西高原中新生代岩石圈构造演化[J].西北地质,2015,48(2):159-168.MENG Y K,WANG X W,LI B,et al. Thermal evolution history of Qinshui basin in central North China Craton and evolution of Mesozoic Cenozoic lithosphere in Shanxi plateau[J]. Northwest geology,2015,48(2):159-168.
    [13]刘焕杰,秦勇,桑树勋,等.山西南部煤层气地质[M].徐州:中国矿业大学出版社,1998.LIU H J,QIN Y,SANG S X,et al. Coal bed gas geology in southern Shanxi[M]. Xuzhou:China University of Mining and Technology Press,1998.
    [14]林建平.山西太古代-中生代构造应力场[J].现代地质,1911,5(4):355-365.LIN J P. Archean Mesozoic tectonic stress field in Shanxi[J]. Modern geology,1911,5(4):355-365.
    [15]万天丰.中国大地构造学纲要[M].北京:地质出版社,2003.WAN T F. Outline of Chinese tectonics[M]. Beijing:Geological Publishing House,2003.
    [16]王猛,朱炎铭,李伍,等.沁水盆地郑庄区块构造演化与煤层气成藏[J].中国矿业大学学报,2012,41(3):425-431.WANG M,ZHU Y M,LI W,et al. Tectonic evolution and coalbed methane accumulation in Zhengzhuang block,Qinshui basin[J]. Journal of China University of Mining and Technology,2012,41(3):425-431.
    [17]景锋,梁合成,边智华,等.地应力测量方法研究综述[J].华北水利水电学院学报,2008,29(2):71-75.JING F,LIANG H C,BIAN Z H,et al. Survey of geostress measurement methods[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power,2008,29(2):71-75.
    [18]蔡美峰.地应力测量原理和技术[M].北京:科学出版社,2000.CAI M F. Principle and technology of in-situ stress measurement[M]. Beijing:Science Press,2000.
    [19]王丹,赵峰华,耿昊,等.临汾区块上主力煤层地应力场特征[J].断块油气田,2015,22(3):287-290.WANG D,ZHAO F H,GENG H,et al. Characteristics of in-situ of stress field for upper main coal seam of Linfen block[J]. Fault-Block Oil&Gas Field,2015,22(3):287-290.
    [20]倪小明,苏现波,张小东.煤层气开发地质学[M].北京:化学工业出版社,2009.NI X M,SU X B,ZHANG X D. Geology and geology of coal bed gas[M]. Beijing:Chemical Industry Press,2009.
    [21]许赛男,黄小平.应用测井资料计算地应力以及地层破裂压力——以库车坳陷克拉A井解释为例[J].内蒙古石油化工,2006(11):105-106.XU S N,HUANG X P. Using logging data to calculate ground stress and formation fracture pressure:Taking the interpretation of well Karat A in Kuche depression as an example[J]. Inner Mongolia Petrochemical Industry,2006(11):105-106.
    [22]杨秀娟,张敏,闫相祯.基于声波测井信息的岩石弹性力学参数研究[J].石油地质与工程,2008,2(4):39-42.YANG X Y,ZHANG M,YAN X Z. Research on rock elastic parameters based on acoustic logging information[J]. Petroleum Geology and Engineering,2008,2(4):39-42.
    [23]李静,查明,刘震.基于声波测井资料的地应力分布研究——以饶阳凹陷任北奥陶系潜山为例[J].岩土力学,2011,32(9):2765-2770.LI J,CHA M,LIU Z. Study on the distribution of ground stress based on acoustic logging data:As in the Raoyang depression of Ordovician in Qianshan as an example[J]. Geotechnical Mechanics,2011,32(9):2765-2770.
    [24]蔡美峰,乔兰,李华斌.地应力测试原理和技术[M].北京:科学出版社,1995.CAI M F,QIAO L,LI H B. Principle and technology of in-situ stress testing[M]. Beijing:Science Press,1995.
    [25]李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版社,1997.LI Z M,ZHANG J Z. Geostress and oil and gas exploration and development[M]. Beijing:Petroleum Industry Press,1997.
    [26] NELSON R A. Geological analysis of naturally fractured reservoirs[M]. Texas:Gulf Publishing Company,1985.
    [27] HOEK E,BROWN E T. Underground excavation in rock[M]. London:The Institute of Mining and Metallurgy,1980.
    [28] LIU H,SANG S,XUE J,et al. Characteristics of an insitu stress field and its control on coal fractures and coal permeability in the Gucheng block,southern Qinshui basin,China[J]. Journal of Natural Gas Science&Engineering,2016,36:1130-1139.
    [29]傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007.FU X H,QIN Y,WEI C T. Coalbed gas geology[M].Xuzhou:China University of Mining and Technology Press,2007.
    [30]徐宏杰,桑树勋,易同生,等.黔西地区煤层埋深与地应力对其渗透性控制机制[J].地球科学——中国地质大学学报,2014,39(11):1607-1616.XU H J,SANG S X,YI T S,et al. Contral mechanism of buried depth and in-situ stress for coal reservoir permeability in western Guizhou[J]. Earth Science:Journal of China University of Geosciences,2014,39(11):1607-1616.
    [31]赵庆波.煤层气区评价参数及勘探方向[J].石油勘探与开发,1997(1):6-10.ZHAO Q B. Evaluation parameters and exploration direction of coal bed gas area[J]. Petroleum Exploration and Development,1997(1):6-10.
    [32]张泓,王绳祖,郑玉柱,等.古构造应力场与透煤储层的相对高渗区预测[J].煤炭学报,2004,31(6):708-711.ZHANG H,WANG S Z,ZHENG Y Z,et al. Prediction of relative high permeability zone of paleotectonic stress field and low permeability coal reservoir[J].Journal of China Coal Geology,2004,31(6):708-711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700