用户名: 密码: 验证码:
西山煤田构造-水文地质对煤层气成藏的控制作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Controlling effects of structural-hydrogeological conditions on coalbed methane accumulation in Xishan Coalfield
  • 作者:曾玲 ; 孙晓光 ; 崔少华 ; 眭晋阳
  • 英文作者:ZENG Ling;SUN Xiaoguang;CUI Shaohua;SUI Jinyang;Shanxi Coal Geological Institute of Hydrological;Xinzhou Branch,Petro China Coal Bed Methane Company;
  • 关键词:构造 ; 水动力 ; 水化学 ; 西山煤田 ; 成藏模式
  • 英文关键词:structure;;hydro-dynamics;;hydro-chemistry;;Xishan Coalfield;;reservoir-forming mode
  • 中文刊名:煤炭科学技术
  • 英文刊名:Coal Science and Technology
  • 机构:山西省煤炭地质水文勘查研究院;中石油煤层气有限责任公司忻州分公司;
  • 出版日期:2019-09-15
  • 出版单位:煤炭科学技术
  • 年:2019
  • 期:09
  • 基金:山西省煤基重点科技攻关资助项目(MQ2014-01)
  • 语种:中文;
  • 页:85-93
  • 页数:9
  • CN:11-2402/TD
  • ISSN:0253-2336
  • 分类号:P618.13
摘要
煤层气富集成藏受构造、沉积环境、水文地质条件、岩浆活动等多方面因素控制,为了研究西山煤田煤层气富集的主控因素及其成藏规律,通过资料收集整理、采样分析研究,发现西山煤田煤层气成藏的主控因素为构造及水文地质条件。利用多口西山煤田水文孔的资料,分别对太原组含水层及山西组含水层的水动力场和水化学场进行研究;利用煤层气井的含气量等资料,找出对煤层气有利的构造、水动力、水化学因素,提出3种构造-水动力成藏模式;最后基于前面的研究提出构造-水动力控制下的煤层气富集区识别标准,对研究区进行富集区识别。研究表明:①西山煤田煤系地层水动力场可以分为三部分地下水流动系统:西北部系统Ⅰ、中南部系统Ⅱ和东部系统Ⅲ;其中屯兰矿东曲矿南部、原相地区以及西部水峪贯向斜核部、杜儿坪断层附近,水动力活动相对较弱,有利于煤层气成藏;②有利于煤层气富集的水化学类型为重碳酸钠型;③提出构造-水动力作用有利于煤层气聚集成藏的3种模式:单斜-水动力成藏、向斜-水动力成藏、断层-水动力成藏;④对西山煤田进行煤层气富集区识别,识别出邢家社附近和杜儿坪南部2个富集区。用上述方法将构造-水文地质条件对煤层气成藏的控制作用定量化和标准化,有利于其他区块参考和利用。
        Coalbed methane rich integration were controlled by many factors such as structure,sedimentary environment,hydro-geological conditions,magnetic activity. In order to study the main controlling factors of coalbed methane enrichment and its accumulation law in Xishan Coalfield,this paper collected and sampled the data,and found that the main controlling factors of the coalbed methane in Xishan Coalfield were structure and hydro-geological conditions. The hydro-dynamic and hydro-chemical fields of Taiyuan Formation aquifer and Shanxi Formation aquifer were studied the data of the hydro-logical pore from several Xishan Coalfield.And then the favorable structural,hydrodynamic and hydro-chemical factors for coalbed methane were found out by using the gas content of coalbed methane wells,and three structural-hydrodynamic reservoir-forming models were proposed. Finally,based on the previous studies,this paper proposed identification criteria of coalbed methane enrichment area under the structure-hydrodynamic control system to identify the enrichment area in the study area. The results show that: ①Xishan coalfield strata hydrodynamic field can be divided into: south-central systemⅠ,northwestern system Ⅱand east system Ⅲ; the hydrodynamic activity was relatively weak in the southern Yuanxiang,Dongqu coal mine,near Duerping fault and in the core of Shuiyuguan syncline,which was conducive to CBM accumulation. ②The water chemistry that was conducive to the enrichment of coalbed methane was sodium bicarbonate; ③Three modes of structure-hydrodynamics which were beneficial to coalbed methane accumulation and accumulation were proposed: monoclinic-hydrodynamic accumulation,syncline-hydrodynamic accumulation,fault-hydrodynamic accumulation. ④ The coalbed methane enrichment areas in Xishan Coalfield were identified: one was near Xingjiashe and the other was in the south of Duerping. The above method was used to quantify and standardize the control effect of structural-hydrological and geological conditions on coalbed methane accumulation,which was beneficial to reference and utilization of other blocks.
引文
[1]朱亚茹,孙蓓蕾,曾凡桂,等.西山煤田古交矿区煤层气藏水文地质特征及其控气作用[J].煤炭学报,2018,43(3):759-769.ZHU Yaru,SUN Beilei,ZENG Fangui,et al. Hydrogeological characteristics of coalbed methane reservoirs in Gujiao Mining Area of Xishan Coalfield and their gas control effect[J]. Journal of China Coal Society,2018,43(3):759-769.
    [2]曹爱国.西山煤田煤层气资源概况及开发前景探讨[J].山西能源与节能,2002(3):23-24.CAO Aiguo. Coalbed methane resources in Xishan coalfield and their development prospects[J].Shanxi Energy and Energy Conservation,2002(3):23-24.
    [3]付君华.西山煤田地质构造发育规律及其影响分析[J].山西焦煤科技,2008(6):17-19.FU Junhua.Geological structure development law and its impact analysis of Xishan coalfield[J]. Shanxi Coking Coal Science and Technology,2008(6):17-19.
    [4]唐书恒,马彩霞,袁焕章.华北地区石炭二叠系煤储层水文地质条件[J].天然气工业,2003,23(1):32-35.TANG Shuheng,MA Caixia,YUAN Huanzhang. Hydrogeological conditions of coalbed methane in Carboniferous-Permian,north China[J].Natural Gas Industry,2003,23(1):32-35.
    [5]汪雷,汤达祯,许浩,等.岩浆活动对西山煤田煤储层物性的差异改造特征[J].煤炭学报,2015,40(8):1900-1910.WANG Lei,TANG Dazhen,XU Hao,et al.Magmatism effect on different transformation characteristics of coal reservoirs physical properties in Xishan coalbed[J]. Journal of China Coal Society,2015,40(8):1900-1910.
    [6]王瑞久.三线图解及其水文地质解释[J].工程勘察,1983,11(6):6-11.WANG Ruijiu. Three line diagram and its hydrological geological explanation[J]. Geotechnical Investigation&Surverying,1983,11(6):6-11.
    [7]王红岩,张建博,刘洪林,等.沁水盆地南部煤层气藏水文地质特征[J].煤田地质与勘探,2001,29(5):33-36.WANG Hongyan,ZHANG Jianbo,LIU Honglin,et al. Hydrogeological is feature of coalbed methane reservoir in the southern Qinshui Basin[J].Coal Geology&Exploration,2001,29(5):33-36.
    [8]毛得雷,康永尚,韩军,等.韩城煤层气田水文地质旋回对煤层气的影响[J].煤炭学报,2012,37(S2):390-394.MAO Delei,KANG Yongshang,HAN Jun,et al.Influence of hydrogeological cycles on CBM in Hancheng CBM field,Central China[J].Journal of China Coal Society,2012,37(S2):390-394.
    [9]池卫国.沁水盆地煤层气的水文地质控制作用[J].石油勘探与开发,1998(3):31-34.CHI Weiguo.Control action of hydrogeological for coalbed methane in Qinshui basin[J]. Petroleum Exploration and Development,1998(3):31-34.
    [10]秦胜飞,宋岩,唐修义,等.流动的地下水对煤层含气性的破坏机理[J].科学通报,2005,48(S1):99-104.QIN Shengfei,SONG Yan,TANG Xiuyi,et al. Failure mechanism of flowing groundwater on coal seam gas-bearing property[J].Chinese Science Bulletin,2005,48(S1):99-104.
    [11]傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007:107-108.
    [12]刘方槐,颜婉莎.油气田水文地质学原理[M].北京:石油工业出版社,1991:63-166.
    [13]林腊梅,金强.孤南洼陷水动力场演化与油气运移[J].新疆石油地质,2004,25(6):617-620.LIN Lamei,JIN Qiang.Evolution of hydrodynamics and petroleum migration in Gunan sub-sag[J]. Xinjiang Petroleum Geology,2004,25(6):617-620.
    [14]宋国奇,刘克奇.断层两盘裂缝发育特征及其石油地质意义[J].油气地质与采收率,2009,16(4):1-4.SONG Cuoqi,LIU Keqi.Petroleum geology and recovery efficiency[J]. Petroleum Geology and Recovery Efficiency,2009,16(4):1-4.
    [15]邵珠福,钟建华,于艳玲,等.从成藏条件和成藏机理对比非常规页岩气和煤层气[J].特种油气藏,2012,19(4):21-24.SHAO Zhufu,ZHONG Jianhua,YU Yanling,et al.Contrast unconventional shale gas and coalbed gas from reservoir-forming conditions and mechanism[J]. Special Oil and Gas Reservoirs,2012,19(4):21-24.
    [16]洪峰,宋岩,陈振宏,等.煤层气散失过程与地质模型探讨[J].科学通报,2005,48(S1):121-125.HONG Feng,SONG Yan,CHEN Zhenhong,et al.Discussion on coal bed methane loss process and geological model[J].Scientific Bulletin,2005,48(S1):121-125.
    [17]汪雷,古交地区煤层气富集成藏模式及有利区预测[D].北京:中国地质大学(北京),2016:47-73.
    [18]桑树勋,唐书恒.煤层气的封存与富集条件[J].石油与天然气地质,1999(2):8-11.SANG Shuxun,TANG Shuheng. Conditions for the storage and enrichment of coalbed methane[J]. Petroleum and Natural Gas Geology,1999(2):8-11.
    [19]曾玲,孙晓光,杨展,等.山西柿庄区块煤层气井产水量数值法预测[J].中国煤层气,2016,13(5):30-34.ZENG Ling,SUN Xiaoguang,YANG Zhan,et al. Prediction of CBM well water production by numerical method in Shizhuang block of Shanxi[J]. China Coalbed Methane,2016,13(5):30-34.
    [20]韩贝贝.西山古交区块煤储层孔渗特性与有利建产区预测[D].徐州:中国矿业大学,2015:17-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700