用户名: 密码: 验证码:
会仙岩溶湿地、稻田与旱地土壤细菌群落结构特征比较
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison of Soil Bacterial Community Structure Between Paddy Fields and Dry Land in the Huixian Karst Wetland,China
  • 作者:贾远航 ; 靳振江 ; 袁武 ; 程跃扬 ; 邱江梅 ; 梁锦桃 ; 潘复静 ; 刘德深
  • 英文作者:JIA Yuan-hang;JIN Zhen-jiang;YUAN Wu;CHENG Yue-yang;QIU Jiang-mei;LIANG Jin-tao;PAN Fu-jing;LIU De-shen;College of Environmental Science and Engineering,Guilin University of Technology;Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area,Guilin University of Technology;Guangxi Scientific Experiment Center of Mining,Metallurgy and Environment;Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology,Guilin University of Technology;
  • 关键词:岩溶湿地 ; 土地利用 ; 细菌 ; 群落结构 ; 高通量测序技术
  • 英文关键词:karst wetland;;land-use;;bacteria;;community structure;;high-throughput sequencing technology
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:桂林理工大学环境科学与工程学院;桂林理工大学岩溶地区水污染控制与用水安全保障协同创新中心;桂林理工大学广西矿冶与环境科学实验中心;桂林理工大学广西环境污染控制理论与技术重点实验室;
  • 出版日期:2019-02-25 17:04
  • 出版单位:环境科学
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金项目(41867008,41361054);; 广西自然科学基金项目(2018GXNSFAA281247);; 桂林理工大学博士启动基金项目(GUTQDJJ2004041)
  • 语种:中文;
  • 页:355-365
  • 页数:11
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:S154.3
摘要
为了探究土地利用变化对湿地系统土壤细菌的影响,以会仙天然湿地、稻田和旱地这3种土地利用方式的耕层土壤(0~20cm)作为研究对象,利用高通量测序技术对土壤细菌群落的α多样性、物种组成和丰度进行分析,并结合土壤理化性质探讨影响细菌群落结构的环境因素.结果表明,会仙湿地系统土壤中存在的细菌隶属于49个门和145个纲.其中,稻田土壤细菌的Shannon指数显著较高;天然湿地土壤细菌的Simpson指数显著较低.在会仙湿地系统土壤的优势菌门(operational taxonomic units,OTUs> 1%)中,天然湿地的优势菌门为变形菌门(52. 15%)、放线菌门(15. 16%)和酸杆菌门(8. 80%);稻田的优势菌门为变形菌门(45. 79%)、酸杆菌门(17. 20%)和绿弯菌门(11. 75%);旱地的优势菌门为变形菌门(51. 42%)、酸杆菌门(15. 51%)和绿弯菌门(7. 43%).在优势菌纲(OTUs> 1%)中,天然湿地的优势菌纲为α-变形菌纲(17. 98%)、β-变形菌纲(13. 72%)和放线菌纲(13. 13%);稻田的优势菌纲为酸杆菌纲(14. 35%)、β-变形菌纲(13. 37%)和δ-变形菌纲(12. 02%);旱地的优势菌纲为α-变形菌纲(19. 44%)、β-变形菌纲(13. 30%)和酸杆菌纲(13. 03%).在优势的OTUs中(> 0. 3%),天然湿地的优势菌属是Sphingomonas(OTU2和59)、Micromonospora(OTU5、24和50487)、Gemmatimonas(OTU1)和Stenotrophomonas(OTU8);稻田的优势菌属是Lysobacter(OTU4和115)和Aquabacterium(OTU33);旱地的优势菌属是Sphingomonas(OTU85、157和2916)、Rhodanobacter(OTU19和52)和Phenlobacterium(OTU60).聚类热图分析显示,3种土地利用下的土壤细菌群落结构差异极其显著.冗余分析结果显示,土壤细菌分布差异主要与p H、土壤总有机碳(SOC)、全氮(TN)、碱解氮(AN)、交换性镁、交换性钙、可溶性有机碳(DOC)和速效磷(AP)等生态因子显著相关(P <0. 05).以上研究结果表明,土地利用方式变化能显著改变会仙湿地土壤的细菌群落结构.
        In order to explore the effect of land-use change on soil bacteria in wetland systems,the topsoil( 0-20 cm) of a natural wetland( NW),paddy field( PF),and dry land( DL) were collected in the Huixian karst wetland. The α-diversity,species composition,and abundance of soil bacterial communities were analyzed using high-throughput sequencing. The effect of environmental factors on bacterial community structure was also examined. The results showed that the soil bacteria in the Huixian karst wetland can be divided into 49 phyla and 145 classes. The Shannon index of bacteria in the PF was significantly higher,and the Simpson index of bacteria in the NW is significantly lower,than in the other two land-use types. The dominant phyla( operational taxonomic units,OTUs> 1%) in the NW were Proteobacteria( 52. 15%),Actinobacteria( 15. 16%),and Acidobacteria( 8. 80%); the dominant phyla in the PF were Proteobacteria( 45. 79%),Acidobacteria( 17. 20%),and Chloroflexi( 11. 75%); the dominant phyla in the DL were Proteus( 51. 42%),Acidobacteria( 15. 51%),and Chloroflexi( 7. 43%). The dominant classes( OTUs > 1%) in the NW were α-Proteobacteria( 17. 98%),β-Proteobacteria( 13. 72%),and Actinobacteria( 13. 13%); the dominant classes in the PF were Acidobacteria( 14. 35%),β-Proteobacteria( 13. 37%),and δ-Proteobacteria( 12. 02%); the dominant classes in the DL were α-Proteobacteria( 19. 44%),Formobacteria( 13. 30%),and Acidobacteria( 13. 03%). Among the dominant OTUs( > 0. 3%),the dominant genera of in the NW were Sphingomonas( OTU2,59),Micromonospora( OTU5,24 and 50487),Gemmatimonas( OTU1),and Tenotrophomonas( OTU8); the dominant genera in the PF were Lysobacter( OTU4 and 115) and Aquabacterium( OTU33); the dominant genera in the DL were Sphingomonas( OTU85,157 and 2916),Rhodanobacter( OTU19 and 52),and Penlobacterium( OTU60). A heatmap showed that there were significant differences in soil bacterial community structure among the three land-use types. Redundancy analysis showed that p H,soil organic carbon( SOC),total nitrogen( TN),alkali-hydrolyzable nitrogen( AN),exchangeable Mg2 +,exchangeable Ca2 +,soluble organic carbon( DOC),and available phosphorus( AP) were the main factors that affected the bacterial community structure in the Huixian karst wetland. These results indicate that changes in land-use types have significantly shaped the structure of soil bacterial communities in this area.
引文
[1]刘晓辉,吕宪国.三江平原湿地生态系统固碳功能及其价值评估[J].湿地科学,2008,6(2):212-217.Liu X H, Lv X G. Assessment of service value of wetland ecosystem carbon sequestration in the Sanjiang plain excluded Muling-Xingkai plain on south of Wanda mountain[J]. Wetland Science,2008,6(2):212-217.
    [2]王勇辉,焦黎.艾比湖湿地土壤有机碳及储量空间分布特征[J].生态学报,2016,36(18):5893-5901.Wang Y H,Jiao L. The characteristics and storage of soil organic carbon in the Ebinur lake wetland[J]. Acta Ecologica Sinica,2016,36(18):5893-5901.
    [3]刘丽,徐明凯,汪思龙,等.杉木人工林土壤质量演变过程中土壤微生物群落结构变化[J].生态学报,2013,33(15):4692-4706.Liu L, Xu M K, Wang S L, et al. Effect of different Cunninghamia lanceolata plantation soil qualities on soil microbial community structure[J]. Acta Ecologica Sinica,2013,33(15):4692-4706.
    [4]靳振江,李强,黄静云,等.典型岩溶生态系统土壤酶活性、微生物数量、有机碳含量及其相关性———以丫吉岩溶试验场为例[J].农业环境科学学报,2013,32(2):307-313.Jin Z J,Li Q,Huang J Y,et al. Relationship among soil organic carbon,enzyme activities and microbial numbers in typical karst ecosystem:a case study of Yaji karst experimental site,China[J]. Journal of Agro-Environment Science,2013,32(2):307-313.
    [5]刘阳,黄懿梅,曾全超.黄土高原不同植被类型下土壤细菌群落特征研究[J].环境科学,2016,37(10):3931-3938.Liu Y,Huang Y M,Zeng Q C. Soil bacterial communities under different vegetation types in the Loess Plateau[J]. Environmental Science,2016,37(10):3931-3938.
    [6]靳振江,曾鸿鹄,李强,等.起源喀斯特溶洞湿地稻田与旱地土壤的微生物数量、生物量及土壤酶活性比较[J].环境科学,2016,37(1):335-341.Jin Z J,Zeng H H,Li Q,et al. Comparisons of microbial numbers,biomasses and soil enzyme activities between paddy field and dryland origins in karst cave wetland[J].Environmental Science,2016,37(1):335-341.
    [7]李甜甜,胡泓,王金爽,等.湿地土壤微生物群落结构与多样性分析方法研究进展[J].土壤通报,2016,47(3):758-762.Li T T,Hu H,Wang J S,et al. Progress in research methods of soil microbial structure and diversity in wetlands[J]. Chinese Journal of Soil Science,2016,47(3):758-762.
    [8]阮楚晋,潘丽霏,刘洁,等.会仙湿地底泥可培养微生物[J].中山大学学报(自然科学版),2018,57(1):21-28.Ruan C J,Pan L F,Liu J,et al. Cultured bacteria from the sediment in the Huixian wetland[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2018,57(1):21-28.
    [9]张丁予,章婷曦,董丹萍,等.沉水植物对沉积物微生物群落结构影响:以洪泽湖湿地为例[J].环境科学,2016,37(5):1734-1741.Zhang D Y, Zhang T X, Dong D P, et al. Influence of submerged plants on microbial community structure in sediment of Hongze Lake[J]. Environmental Science,2016,37(5):1734-1741.
    [10] Bissett A,Richardson A E,Baker G,et al. Long-term land use effects on soil microbial community structure and function[J].Applied Soil Ecology,2011,51:66-78.
    [11]王明月,毕荣璐,熊智,等.农田利用方式对剑湖湿地土壤微生物多样性的影响[J].南方农业学报,2014,45(3):395-400.Wang M Y,Bi R L,Xiong Z,et al. Effects of different farmland applications on soil microbial community structure diversity in Jianhu wetland lakeside zone[J]. Journal of Southern Agriculture,2014,45(3):395-400.
    [12] Stoeva M K, Aris-Brosou S, Chételat J, et al. Microbial community structure in lake and wetland sediments from a high Arctic polar desert revealed by targeted transcriptomics[J]. PLo S One,2014,9(3):e89531.
    [13]蔡德所,马祖陆.会仙岩溶湿地生态系统研究[M].北京:地质出版社,2012.
    [14]蔡德所,马祖陆,赵湘桂,等.桂林会仙岩溶湿地近40年演变的遥感监测[J].广西师范大学学报(自然科学版),2009,27(2):111-117.Cai D S,Ma Z L,Zhao X G,et al. Remote sensing supervision on spatio-temporal evolution of karst wetland in recent 40 years in Huixian district of Guilin,China[J]. Journal of Guangxi Normal University(Natural Science Edition),2009,27(2):111-117.
    [15]靳振江,程亚平,李强,等.会仙喀斯特溶洞湿地、稻田和旱田土壤有机碳含量及其与养分的关系[J].湿地科学,2014,12(4):485-490.Jin Z J,Cheng Y P,Li Q,et al. Content of soil organic carbon and its relationship with nutrients in karst cave wetlands,paddy fields and dry farmlands in Huixian[J]. Wetland Science,2014,12(4):485-490.
    [16]陈颖,邱凯瑞,吴麒,等.桂林会仙岩溶湿地产甲烷菌的数量、群落组成和活性[J].应用与环境生物学报,2017,23(6):959-967.Chen Y,Qiu K R,Wu Q,et al. Methanogenic community structure,abundance,and activity in Huixian karst wetland,Guilin, China[J]. Chinese Journal of Applied and Environmental Biology,2017,23(6):959-967.
    [17]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学出版社,1999.
    [18]高东,何霞红.生物多样性与生态系统稳定性研究进展[J].生态学杂志,2010,29(12):2507-2513.Gao D, He X H. Research advances on biodiversity and ecosystem stability[J]. Chinese Journal of Ecology,2010,29(12):2507-2513.
    [19]陶金.鄱阳湖湿地围垦后土壤团聚体结构、有机碳及微生物多样性变化的研究[D].南昌:南昌大学,2012.
    [20]张杰,胡维,刘以珍,等.鄱阳湖湿地不同土地利用方式下土壤微生物群落功能多样性[J].生态学报,2015,35(4):965-971.Zhang J,Hu W,Liu Y Z,et al. Response of soil microbial functional diversity to different land-use types in wetland of Poyang Lake,China[J]. Acta Ecologica Sinica,2015,35(4):965-971.
    [21]林黎,崔军,陈雪萍,等.滩涂围垦和土地利用对土壤微生物群落的影响[J].生态学报,2014,34(4):899-906.Li L,Cui J,Chen X P,et al. Effects of reclamation on tidal fiat and land use on soil microbial community[J]. Acta Ecologica Sinica,2014,34(4):899-906.
    [22]陈孟立,曾全超,黄懿梅,等.黄土丘陵区退耕还林还草对土壤细菌群落结构的影响[J].环境科学,2018,39(4):1824-1832.Chen M L,Zeng Q C, Huang Y M, et al. Effects of the farmland-to-forest/grassland conversion program on the soil bacterial community in the loess hilly region[J]. Environmental Science,2018,39(4):1824-1832.
    [23] Liu J J,Sui Y Y,Yu Z H,et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology and Biochemistry,2014,70:113-122.
    [24]王娜,高婕,魏静,等.三江平原湿地开垦对土壤微生物群落结构的影响[J].环境科学,2019,40(5):2375-2381.Wang N,Gao J,Wei J,et al. Effects of wetland reclamation on soil microbial community structure in Sanjiang plain[J].Environmental Science,2019,40(5):2375-2381.
    [25]滕泽栋,李敏,朱静,等.野鸭湖湿地芦苇根际微生物多样性与磷素形态关系[J].环境科学,2017,38(11):4589-4597.Teng Z D,Li M,Zhu J,et al. Effects of soil microbial diversity on the phosphate fraction in the rhizosphere of Phragmites communis in the Yeyahu wetland in Beijing, China[J].Environmental Science,2017,38(11):4589-4597.
    [26] Ansola G,Arroyo P,Sáenz de Miera L E. Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands[J]. Science of the Total Environment,2014,473-474:63-71.
    [27] Jones R T,Robeson M S,Lauber C L,et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The ISME Journal,2009,3(4):442-453.
    [28]邸琰茗,王广煊,黄兴如,等.再生水补水对河道底泥细菌群落组成与功能的影响[J].环境科学,2017,38(2):743-751.Di Y M,Wang G X,Huang X R,et al. Effect of reclaimed water on bacterial community composition and function in urban river sediment[J]. Environmental Science,2017,38(2):743-751.
    [29] Zvyagintsev D G,Zenova G M,Oborotov G V,et al. Moderately haloalkaliphilic actinomycetes in salt-affected soils[J]. Eurasian Soil Science,2009,42(13):1515-1520.
    [30] Olisaka F N,Ayanru D K G. Dominant mesophilic actinomycetes in Oredo soils[J]. Journal of Microbiology,Biotechnology and Food Sciences,2013,3(1):49-53.
    [31]马栋山,熊薇,张琼琼,等.基于T-RFLP和因子分析的香蒲根际细菌群落研究[J].中国环境科学,2014,34(10):2684-2691.Ma D S,Xiong W,Zhang Q Q,et al. The research of cattail rhizosphere bacteria community based on T-RFLP and FA[J].China Environmental Science,2014,34(10):2684-2691.
    [32]徐莉,黄亮亮,吴志强,等.广西会仙湿地土壤重金属分布特征及风险评估[J].安徽农业科学,2016,44(29):35-38,101.Xu L,Huang L L,Wu Z Q,et al. Distribution characteristics and risk assessment of heavy metals in Huixian wetland of Guangxi province[J]. Journal of Anhui Agricultural Sciences,2016,44(29):35-38,101.
    [33] Ge Y,Chen C R,Xu Z H,et al. Carbon/nitrogen ratio as a major factor for predicting the effects of organic wastes on soil bacterial communities assessed by DNA-based molecular techniques[J]. Environmental Science and Pollution Research,2010,17(3):807-815.
    [34]孔令姣,陈吉祥,杨智,等.石油污染土壤强化修复前后细菌多样性变化研究[J].基因组学与应用生物学,2018,37(8):3426-3433.Kong L J,Chen J X,Yang Z,et al. Research on the change of bacteria diversity before and after strengthened repair of the petroleum contaminated soil[J]. Genomics and Applied Biology,2018,37(8):3426-3433.
    [35]冯海玮,王大欣,毛亮,等.有机种植对麦田土壤微生物群落影响[J].上海交通大学学报(农业科学版),2016,34(5):68-75.Feng H W,Wang D X,Mao L,et al. Influence of organic cultivation on soil microbial community in cornfield[J]. Journal of Shanghai Jiaotong University(Agricultural Science),2016,34(5):68-75.
    [36]喻江,于镇华,Ikenaga M,等.施用有机肥对侵蚀黑土玉米苗期根内生细菌多样性的影响[J].应用生态学报,2016,27(8):2663-2669.Yu J,Yu Z H,Ikenaga M,et al. Effects of manure application on the diversity of corn root endophytic bacterial communities at seedling stage in eroded Mollisols[J]. Chinese Journal of Applied Ecology,2016,27(8):2663-2669.
    [37]马垒,郭志彬,王道中,等.长期三水平磷肥施用梯度对砂姜黑土细菌群落结构和酶活性的影响[J/OL].土壤学报,2018. http://pedologica. issas. ac. cn/trxb/ch/reader/view_abstract. aspx? flag=2&file_no=201803190000002&journal_id=trxb,2018-08-15.Ma L, Guo Z B, Wang D Z, et al. Effect of long-term application of phosphorus fertilizer on soil bacterial community structure and enzymatic activity in lime concretion black soil relative to P application rate[J/OL]. Acta Pedologica Sinica,2018. http://pedologica. issas. ac. cn/trxb/ch/reader/view_abstract. aspx? flag=2&file_no=201803190000002&journal_id=trxb,2018-08-15.
    [38]林叶春,李雨,陈伟,等.绿肥压青对喀斯特地区植烟土壤细菌群落特征的影响[J].中国土壤与肥料,2018,(3):161-167.Lin Y C,Li Y,Chen W,et al. Effects of green manures on the bacterial community characteristics of the rhizosphere soil in flue cured tobacco[J]. Soil and Fertilizer Sciences in China,2018,(3):161-167.
    [39]马飞,徐婷婷,李明,等.锦鸡儿植物对盐碱地土壤理化性质和细菌群落的影响[J].西北植物学报,2017,37(9):1872-1880.Ma F,Xu T T,Li M,et al. Effect of plantation of Caragana species on soil properties and bacterial community dynamics in saline-alkali soil[J]. Acta Botanica Boreali-Occidentalia Sinica,2017,37(9):1872-1880.
    [40]幸晶晶,雷琼,邱祖明,等.应用高通量技术分析F446饱水木漆器中微生物群落结构多样性[J].微生物学通报,2018,45(8):1685-1692.Xing J J,Lei Q,Qiu Z M,et al. Microbial community structure and diversity in waterlogged wood and lacquer named F446 by Illumina Mi Seq technology[J]. Microbiology China,2018,45(8):1685-1692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700