用户名: 密码: 验证码:
氧化铁改性秸秆炭吸附铬(Ⅵ)性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization, characterization, and Cr(Ⅵ)adsorption properties of iron oxide-coated wheat straw biochar
  • 作者:李际会 ; 王鹏 ; 庄克章 ; 卞建波 ; 唐洪杰 ; 郭艳萍 ; 宋吉青
  • 英文作者:LI Ji-hui;WANG Peng;ZHUANG Ke-zhang;BIAN Jian-bo;TANG Hong-jie;GUO Yan-ping;SONG Ji-qing;Linyi Academy of Agricultural Sciences;Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences;
  • 关键词:秸秆炭 ; 氧化铁 ; 吸附 ; 铬(Ⅵ) ; 响应面法
  • 英文关键词:wheat straw biochar;;iron oxide;;adsorption;;chromium(Ⅵ);;response surface methodology
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:临沂市农业科学院;中国农业科学院农业环境与可持续发展研究所;
  • 出版日期:2019-08-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:08
  • 基金:国家重点研发计划项目(2018YFD0800902);; 农业农村部华东都市农业重点实验室开放课题(HD201806);; 国家重点研发计划项目(2017YFD0301003);; 临沂市农业科学院中青年自主创新项目(LNK201802)~~
  • 语种:中文;
  • 页:334-344
  • 页数:11
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X703
摘要
为增强秸秆炭对水体中铬(Ⅵ)的吸附能力,利用FeCl3溶液,把氧化铁引入其孔隙中,通过响应面实验方法优化制备过程。得到最优氧化铁改性秸秆炭(以最优改性炭表示)的制备条件为炭化温度400℃,铁与炭质量比0.85。最优改性炭和未改性炭特性通过元素分析、BET比表面积、扫描电镜、红外光谱和X射线衍射等表征测定,结果表明:最优改性炭表面粗糙,比表面积和孔隙体积增大,孔隙中含有多种氧化铁成分。最优改性炭吸附铬性能表明:Langmuir理论最大铬吸附量为30.96 mg·g-1;吸附过程符合准二级动力学模型;随溶液pH值的增大,铬吸附量减小;随炭用量的增加,铬去除率增大。研究表明:改性秸秆炭的铬(Ⅵ)吸附能力得到显著提升,可用于水体中铬(Ⅵ)的吸附去除,这也为高效利用农作物秸秆提供新途径。
        To enhance the adsorption capacity of chromium(Ⅵ)from water by wheat straw biochar, FeCl3 solution was used to introduce iron oxide into the biochar pores; the preparation process was optimized using response surface methodology(RSM). A carbonization temperature of 400 ℃ and iron/biochar mass ratio of 0.85 were the optimum conditions for the preparation of iron oxide-modified straw biochar(expressed as optimal modified biochar). The optimal modified biochar and the straw biochar samples were characterized by elemental analysis, BET specific surface area, scanning electron microscopy, infrared spectroscopy, and X-ray diffraction. The surface of the optimal modified biochar was rough, the specific surface area and pore volume increased, and a large amount of iron oxide was introduced into the biochar pores. The chromium adsorption performance results showed that the maximum chromium adsorption capacity was 30.96 mg?g-1,based on Langmuir theory. Kinetic studies showed that a pseudo second-order rate equation fit the experimental data well. Chromium adsorption decreased with an increase in pH. With an increase in straw biochar content, the removal rate of chromium increased. The adsorption ability of wheat straw biochar was significantly improved with iron oxide coating, which can be used for the adsorption removal of Cr(Ⅵ)from water, providing a new way to use crop straw efficiently.
引文
[1] Mohan D, Pittman J C U. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water[J]. Journal of Hazardous Materials, 2006, 137(2):762-811.
    [2]王恩萱.花生壳活性炭对六价铬的吸附[J].环境科学导刊, 2010, 29(A01):67-71.WANG En-xuan. Adsorption of chromium(Ⅵ)by peanut shell activated carbon[J]. Environmental Science Survey, 2010, 29(A01):67-71.
    [3] Acharya J, Sahu J N, Sahoo B K, et al. Removal of chromium(VI)from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride[J]. Chemical Engineering Journal, 2009, 150(1):25-39.
    [4] Cronje K J, Chetty K, Carsky M, et al. Optimization of chromium(VI)sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride[J]. Desalination, 2011,275(1):276-284.
    [5]缪清清,韩永和,钱庆荣.植物源活性炭的制备及其应用研究进展[J].应用化工, 2013, 41(12):2156-2159.MIAO Qing-qing, HAN Yong-he, QIAN Qing-rong. Research process in preparation and application of plant-based activated carbon[J]. Applied Chemical Industry, 2013, 41(12):2156-2159.
    [6] Dias J M, Alvim-Ferraz M, Almeida M F, et al. Waste materials for activated carbon preparation and its use in aqueous-phase treatment:A review[J]. Journal of Environmental Management, 2007, 85(4):833-846.
    [7] Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production:A review[J]. Renewable and Sustainable Energy Reviews, 2007, 11(9):1966-2005.
    [8]司崇殿,郭庆杰.活性炭活化机理与再生研究进展[J].中国粉体技术, 2008, 14(5):48-52.SI Chong-dian, GUO Qing-jie. Progress research on activation mechanism and regeneration of activated carbon[J]. China Powder Science and Technology, 2008, 14(5):48-52.
    [9]刘晓雨,卞荣军,陆海飞,等.生物质炭与土壤可持续管理:从土壤问题到生物质产业[J].中国科学院院刊, 2018, 33(2):184-190.LIU Xiao-yu, BIAN Rong-jun, LU Hai-fei. et al. Biochar for sustainable soil management:Biomass technology and industry from soil perspectives[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2):184-190.
    [10] Li J, Lv G, Bai W, et al. Modification and use of biochar from wheat straw(Triticum aestivum L.)for nitrate and phosphate removal from water[J]. Desalination and Water Treatment, 2016, 57(10):4681-4693.
    [11] Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 2007, 5(7):381-387.
    [12] Chen W, Parette R, Zou J, et al. Arsenic removal by iron-modified activated carbon[J]. Water Research, 2007, 41:1851-1858.
    [13] Zach-Maor A, Semiat R, Shemer H. Synthesis, performance, and modeling of immobilized nano-sized magnetite layer for phosphate removal[J]. Journal of Colloid and Interface Science, 2011, 357(2):440-446.
    [14] Zhang Q L, Lin Y C, Chen X, et al. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water[J]. Journal of Hazardous Materials, 2007, 148(3):671-678.
    [15] Yu M R, Chang Y Y, Yang J K. Application of activated carbon impregnated with metal oxides to the treatment of multi-contaminants[J]. Environmental Technology, 2012, 33(14):1553-1559.
    [16] Zhang N, Lin L S, Gang D. Adsorptive selenite removal from water using iron-coated GAC adsorbents[J]. Water Research, 2008, 42:3809-3816.
    [17]周鑫,孙海龙,张泽乾.响应面法在污水处理工艺优化中的应用[J].化学研究与应用, 2017, 29(6):753-760.ZHOU Xin, SUN Hai-long, ZHANG Ze-qian. Application of process optimization of wastewater treatment using response surface methodology[J]. Chemical Research and Application, 2017, 29(6):753-760.
    [18] Alam Z, Muyibi S A, Toramae J. Statistical optimization of adsorption processes for removal of 2, 4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches[J]. Journal of Environmental Sciences, 2007, 19(6):674-677.
    [19] Sahu J N, Acharya J, Meikap B C. Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology[J]. Bioresource Technology, 2010, 101(6):1974-1982.
    [20]李际会,吕国华,白文波,等.改性生物炭的吸附作用及其对土壤硝态氮和有效磷淋失的影响[J].中国农业气象, 2012, 33(2):220-225.LI Ji-hui, LüGuo-hua, BAI Wen-bo. et al. Effect of modified biochar on soil nitrate nitrogen and available phosphorus leaching[J].Chinese Journal of Agrometeorology, 2012, 33(2):220-225.
    [21] Demiral H, Gündüzo?lu G. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse[J]. Bioresource Technology, 2010, 101(6):1675-1680.
    [22] Cazetta A L, Vargas A M M, Nogami E M, et al. NaOH-activated carbon of high surface area produced from coconut shell:Kinetics and equilibrium studies from the methylene blue adsorption[J]. Chemical Engineering Journal, 2011, 174(1):117-125.
    [23] Hassan A F, Youssef A M. Preparation and characterization of microporous NaOH-activated carbons from hydrofluoric acid leached rice husk and its application for lead(Ⅱ)adsorption[J]. Carbon Letters,2014, 15(1):57-66.
    [24] Yang R, Liu G, Xu X, et al. Surface texture, chemistry and adsorption properties of acid blue 9 of hemp(Cannabis sativa L.)bast-based activated carbon fibers prepared by phosphoric acid activation[J]. Biomass and Bioenergy, 2011, 35(1):437-445.
    [25]陈永.多孔材料制备与表征[M].合肥:中国科学技术大学出版社, 2012.CHEN Yong. Preparation and characterization of porous materials[M].Hefei:University of Science and Technology of China Press, 2012.
    [26] Liou T H, Wu S J. Characteristics of microporous/mesoporous carbons prepared from rice husk under base-and acid-treated conditions[J].Journal of Hazardous Materials, 2009, 171(1):693-703.
    [27] Liu Y, Zhao X, Li J, et al. Characterization of bio-char from pyrolysis of wheat straw and its evaluation on methylene blue adsorption[J]. Desalination and Water Treatment, 2012, 46(1/2/3):115-123.
    [28] Namduri H, Nasrazadani S. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry[J]. Corrosion Science,2008, 50(9):2493-2497.
    [29]田宝珍,汤鸿霄.聚合铁的红外光谱和电导特征[J].环境化学,1990(6):70-76.TIAN Bao-zhen, TANG Hong-xiao. Infrared spectra and electrical conductivity of polymeric Fe(Ⅲ)species[J]. Environmental Chemistry, 1990(6):70-76.
    [30] Schwertmann U, Cornell R M. The iron oxides[M]. New York, WileyVCH Verlag GmbH&Co, 2003.
    [31] Shi L N, Zhang X, Chen Z L. Removal of Chromium(Ⅵ)from wastewater using bentonite-supported nanoscale zero-valent iron[J]. Water Research, 2011, 45(2):886-892.
    [32] Ge X, Ma Y, Song X, et al.β-FeOOH nanorods/carbon foam-based hierarchically porous monolith for highly effective arsenic removal[J].ACS Applied Materials&Interfaces, 2017, 9(15):13480-13490.
    [33] Streat M, Hellgardt K, Newton N L R. Hydrous ferric oxide as an adsorbent in water treatment:Part 1. Preparation and physical characterization[J]. Process Safety and Environmental Protection, 2008, 86(1):1-9.
    [34]乔晨,马建超,李彦威,等. Fe3O4@SiO2@CS/PAA的制备及其对Cr(Ⅵ)吸附性能的研究[J].太原理工大学学报, 2017, 48(2):149-155.QIAO Chen, MA Jian-chao, LI Yan-wei, et al. Prepartion of Fe3O4@SiO2@CS/PAA and its application in absorbing Cr(Ⅵ)from wastewater[J]. Journal of Taiyuan University of Technology, 2017, 48(2):149-155.
    [35]?ztürk N, Bekta?T E. Nitrate removal from aqueous solution by adsorption onto various materials[J]. Journal of Hazardous Materials,2004, 112(1):155-162.
    [36]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2005.BAO Shi-dan. Soil agricultural chemistry analysis[M]. Beijing:China Agriculture Press, 2005.
    [37] Kasiuliene A, Carabante I, Bhattacharya P, et al. Removal of metal(oid)s from contaminated water using iron-coated peat sorbent[J].Chemosphere, 2018, 198:290-296.
    [38] Aleksandra Tyt?ak, Oleszczuk P, Dobrowolski R. Sorption and desorption of Cr(Ⅵ)ions from water by biochars in different environmental conditions[J]. Environmental Science and Pollution Research, 2015, 22(8):5985-5994.
    [39] Chen C, Zhao P, Li Z, et al. Adsorption behavior of chromium(Ⅵ)on activated carbon from eucalyptus sawdust prepared by microwave-assisted activation with ZnCl2[J]. Desalination and Water Treatment,2016, 57(27):12572-12584.
    [40] Ouma I L A, Naidoo E B, Ofomaja A E. Iron oxide nanoparticles stabilized by lignocellulosic waste as green adsorbent for Cr(Ⅵ)removal from wastewater[J]. European Physical Journal Applied Physics, 2017,79:30401.
    [41] Rajput S, Pittman C U, Mohan D. Magnetic magnetite(Fe3O4)nanoparticle synthesis and applications for lead(Pb2+)and chromium(Cr6+)removal from water[J]. Journal of Colloid and Interface Science, 2015,468:334-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700