用户名: 密码: 验证码:
油假丝酵母HOG途径应答研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in the HOG pathway of Candida glycerinogenes
  • 作者:陆信曜 ; 诸葛斌 ; 宗红 ; 嵇豪
  • 英文作者:LU XinYao;ZHUGE Bin;ZONG Hong;JI Hao;Research Center of Industrial Microbiology, Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology,Jiangnan University;
  • 关键词:油假丝酵母 ; HOG途径应答 ; 调控
  • 英文关键词:Candida glycerinogenes;;stress response by HOG pathway;;regulation
  • 中文刊名:中国科学:生命科学
  • 英文刊名:Scientia Sinica(Vitae)
  • 机构:江南大学生物工程学院工业微生物教育部重点实验室工业微生物研究室;
  • 出版日期:2019-05-22 09:28
  • 出版单位:中国科学:生命科学
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金(批准号:31570052);; 国家轻工技术与工程一流学科自主课题(批准号:LITE2018-01)资助
  • 语种:中文;
  • 页:51-60
  • 页数:10
  • CN:11-5840/Q
  • ISSN:1674-7232
  • 分类号:Q933
摘要
油假丝酵母(Candida glycerinogenes)是工业油生产菌株,具有多重高抗逆、生长迅速、糖代谢高效等优点,是优良的工业宿主菌株.高渗油(high osmolarity glycerol, HOG)应答途径是真核细胞应答高渗透压胁迫的关键响应机制.本文从产油酵母HOG途径的生物信息学分析、MAP激酶Hog1对细胞表型、油转运和合成、氨基酸的合成与转运调控进行阐述,为进一步理解该酵母的HOG应答途径和抗逆机制奠定了基础.
        Candida glycerinogenes has been applied in the bioproduction of glycerol at industrial scale. It is an excellent industrial host with high tolerance to multistress, rapid cell growth, and glucose consumption. High osmolarity glycerol pathway(HOG) is a key regulatory mechanism in the stress response of eukaryotic cell. In this review, we summarize the components of HOG pathway and the effects of protein HOG1 on cell phenotype and the transportation and synthesis of glycerol and amino acids in C. glycerinogenes to further understand its HOG pathway and stress tolerance mechanism.
引文
1 Wang Z X,Zhuge J,Fang H,et al.Glycerol production by microbial fermentation:A review.Biotechnol Adv,2001,19:201-223
    2 Guo X N,Zhuge B.Screening Candida glycerolgeneses mutants with high productivity and the fermentation performance of the mutants(in Chinese).J Food Sci Biotech,2002,21:336-339[郭雪娜,诸葛斌.高强度产油假丝酵母突变株的选育及其发酵性状.食品与生物技术学报,2002,21:336-339]
    3 Zhuge B,Guo X N,Mawadza C,et al.A novel Candida glycerinogenes mutant with high glycerol productivity in high phosphate concentration medium.World J Microbiol Biotechnol,2005,21:453-456
    4 Song B P.The Physiological and Biochemical Characterisics and Ploidy of C.glycerinogenes and Its Metabolism of Different Carbon Sources(in Chinese).Dissertation for Master’s Degree.Wuxi:Southern Yangtes University,2012.1-47[宋保平.产油假丝酵母生理生化特性,倍性及不同碳源发酵代谢的研究.硕士学位论文.无锡:江南大学,2012.1-47]
    5 Ji H,Lu X,Wang C,et al.Identification of a novel HOG1 homologue from an industrial glycerol producer Candida glycerinogenes.Curr Microbiol,2014,69:909-914
    6 Yang F,Lu X,Zong H,et al.Gene expression profiles of Candida glycerinogenes under combined heat and high-glucose stresses.J Biosci Bioeng,2018,126:464-469
    7 Xie T.Effects of Phosphate-limitation on glycerol biosynthesis and intracellular phosphorus accumulation of Candida glycerinogenes(in Chinese).Microbiol China,2009,36:1289-1293[谢涛.限磷对产油假丝酵母油合成与胞内磷积累的影响.微生物学通报,2009,36:1289-1293]
    8 Xie T,Fang H Y,Zhuge J.Effects of phosphorus sources on the production of Candida glycerinogenes fermentation and kinetic analysis(in Chinese).J Chem Ind Eng,2005,56:2404-2409[谢涛,方慧英,诸葛健.磷源对产油假丝酵母发酵生产油的影响及动力学分析.化工学报,2005,56:2404-2409]
    9 Xie T.Stimulatory effects of some amino acids on glycerol production by Candida glycerinogenes(in Chinese).Chin J Biotech,2006,22:138-143[谢涛.一些氨基酸对产油假丝酵母油生产的促进作用.生物工程学报,2006,22:138-143]
    10 Jiao C,Zhuge B,Fang H Y,et al.Effects of dissolved oxygen on metabolic flow distribution in glycerol-producing fermentation(in Chinese).JChem Ind Eng,2012,63:1156-1167[焦策,诸葛斌,方慧英,等.溶氧对产油发酵代谢流分布的影响.化工学报,2012,63:1156-1167]
    11 Xie T,Fang H Y,Zhuge J.Mechanism of corn steep liquor during glycerol fermentation by Candida glycerinogenes(in Chinese).Microbiol China,2006,33:80-84[谢涛,方慧英,诸葛健.玉米浆在产油假丝酵母油发酵中的作用机理.微生物学通报,2006,33:80-84]
    12 Xie T,Fang H Y,Zhuge J,et al.Effects of osmotic pressure on glycerol synthesis and intracellular phosphorus accumulation in Candida glyceropoiesis(in Chinese).J Chin Biotechnol,2009:61-66[谢涛,方慧英,诸葛斌,等.渗透压对产油假丝酵母油合成与胞内磷积累的影响.中国生物工程杂志,2009:61-66]
    13 Xie T,Fang H Y,Zhuge J,et al.Effects of temperature on the fermentation process of Candida glyceropoiesis(in Chinese).Chem Eng,2009,37:55-58[谢涛,方慧英,诸葛斌,等.温度对产油假丝酵母产油发酵过程的影响.化学工程,2009,37:55-58]
    14 Krantz M,Becit E,Hohmann S.Comparative genomics of the HOG-signalling system in fungi.Curr Genet,2006,49:137-151
    15 de Nadal E,Ammerer G,Posas F.Controlling gene expression in response to stress.Nat Rev Genet,2011,12:833-845
    16 Krantz M,Becit E,Hohmann S.Comparative analysis of HOG pathway proteins to generate hypotheses for functional analysis.Curr Genet,2006,49:152-165
    17 de Dios C H,Roman E,Alonso Monge R,et al.The role of MAPK signal transduction pathways in the response to oxidative stress in the fungal pathogen Candida albicans:Implications in virulence.Curr Protein Peptide Sci,2010,11:693-703
    18 Ji H.Candida glycerinogenes HOG Reply Way and Osmotic Tolerance Mechanism Research(in Chinese).Dissertation for Doctoral Degree.Wuxi:Jiangnan University,2018[嵇豪.Candida glycerinogenes HOG应答途径及渗透压耐受机制研究.博士学位论文.无锡:江南大学,2018]
    19 Rodríguez-Pe?a J M,García R,Nombela C,et al.The high-osmolarity glycerol(HOG)and cell wall integrity(CWI)signalling pathways interplay:A yeast dialogue between MAPK routes.Yeast,2010,27:495-502
    20 Cheetham J,Smith D A,da Silva Dantas A,et al.A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans.Mol Biol Cell,2007,18:4603-4614
    21 Furukawa K,Hoshi Y,Maeda T,et al.Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress.Mol Microbiol,2010,56:1246-1261
    22 El-Mowafy M,Bahgat M M,Bilitewski U.Deletion of the HAMP domains from the histidine kinase CaNik1p of Candida albicans or treatment with fungicides activates the MAP kinase Hog1p in S.cerevisiae transformants.BMC Microbiol,2013,13:209
    23 Hagiwara D,Suzuki S,Kamei K,et al.The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus.Fungal Genets Biol,2014,73:138-149
    24 Posas F,Wurgler-Murphy S M,Maeda T,et al.Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1“two-component”osmosensor.Cell,1996,86:865-875
    25 Eisman B,Alonso-Monge R,Román E,et al.The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans.Eukaryotic Cell,2006,5:347-358
    26 Azad G K,Singh V,Thakare M J,et al.Mitogen-activated protein kinase Hog1 is activated in response to curcumin exposure in the budding yeast Saccharomyces cerevisiae.BMC Microbiol,2014,14:317
    27 Lawrence C L,Botting C H,Antrobus R,et al.Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast:Regulating adaptation to citric acid stress.Mol Cell Biol,2004,24:3307-3323
    28 Wang H,He Z,Luo L,et al.An aldo-keto reductase,Bbakr1,is involved in stress response and detoxification of heavy metal chromium but not required for virulence in the insect fungal pathogen,Beauveria bassiana.Fungal Genets Biol,2018,111:7-15
    29 Saito H,Posas F.Response to hyperosmotic stress.Genetics,2012,192:289-318
    30 Thorsen M,Di Y,T?ngemo C,et al.The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in Yeast.Mol Biol Cell,2006,17:4400-4410
    31 Zheng D,Wang Y,Han Y,et al.UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens.Sci Rep,2016,6:24824
    32 Zheng D,Zhang S,Zhou X,et al.The FgHOG1 pathway regulates hyphal growth,stress responses,and plant infection in Fusarium graminearum.PLoS ONE,2012,7:e49495
    33 Enjalbert B,Smith D A,Cornell M J,et al.Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans.Mol Biol Cell,2005,17:1018-1032
    34 Hohmann S.An integrated view on a eukaryotic osmoregulation system.Curr Genet,2015,61:373-382
    35 Kayingo G,Wong B.The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans.Microbiology,2005,151:2987-2999
    36 Kawasaki L,Casta?eda-Bueno M,Sánchez-Paredes E,et al.Protein kinases involved in mating and osmotic stress in the yeast Kluyveromyces lactis.Eukaryotic Cell,2008,7:78-85
    37 Duskova M,Borovikova D,Herynkova P,et al.The role of glycerol transporters in yeast cells in various physiological and stress conditions.FEMS Microbiol Lett,2015,362:1-8
    38 Krantz M,Ahmadpour D,Ottosson L G,et al.Robustness and fragility in the yeast high osmolarity glycerol(HOG)signal-transduction pathway.Mol Syst Biol,2009,5:281
    39 Ji H,Zhuge B,Zong H,et al.Role of CgHOG1 in stress responses and glycerol overproduction of Candida glycerinogenes.Curr Microbiol,2016,73:827-833
    40 Winkler A,Arkind C,Mattison C P,et al.Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway,and protein tyrosine phosphatases are essential under heat stress.Eukaryot Cell,2002,1:163-173
    41 Qian J,Qin X,Yin Q,et al.Cloning and characterization of Kluyveromyces marxianus Hog1 gene.Biotechnol Lett,2011,33:571-575
    42 Guan N,Li J,Shin H D,et al.Microbial response to environmental stresses:From fundamental mechanisms to practical applications.Appl Microbiol Biotechnol,2017,101:3991-4008
    43 Dihazi H,Kessler R,Eschrich K.High osmolarity glycerol(HOG)pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress.J Biol Chem,2004,279:23961-23968
    44 Chen X,Fang H,Zhuge B,et al.Heterologous expression of the osmotolerant yeast Candida glycerolgenesis glycerol-3-phosphate dehydrogenase gene(CgGPD)in Saccharomyces cerevisiae lacking the HOG pathway.Process Biochem,2013,48:1469-1475
    45 Chen X,Fang H,Rao Z,et al.Cloning and characterization of a NAD+-dependent glycerol-3-phosphate dehydrogenase gene from Candida glycerinogenes,an industrial glycerol producer.FEMS Yeast Res,2008,8:725-734
    46 Ding W T,Zhang G C,Liu J J.3′Truncation of the GPD1 promoter in Saccharomyces cerevisiae for improved ethanol yield and productivity.Appl Environ Microbiol,2013,79:3273-3281
    47 Bouwman J,Kiewiet J,Lindenbergh A,et al.Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast.Yeast,2011,28:43-53
    48 Hohmann S,Krantz M,Nordlander B.Yeast osmoregulation.Method Enzymol,2007,428:29-45
    49 Ferreira C,van Voorst F,Martins A,et al.A member of the sugar transporter family,Stl1p is the glycerol/H+symporter in Saccharomyces cerevisiae.Mol Biol Cell,2005,16:2068-2076
    50 Bai C,Tesker M,Engelberg D.The yeast Hot1 transcription factor is critical for activating a single target gene,STL1.Mol Biol Cell,2015,26:2357-2374
    51 Ferreira C,Lucas C.Glucose repression over Saccharomyces cerevisiae glycerol/H+symporter gene STL1 is overcome by high temperature.FEBS Lett,2007,581:1923-1927
    52 Gomar-Alba M,Amaral C,Artacho A,et al.The C-terminal region of the Hot1 transcription factor binds GGGACAAA-related sequences in the promoter of its target genes.Biochim Biophys Acta(BBA),2015,1849:1385-1397
    53 Palma M,Goffeau A,Spencer-Martins I,et al.A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts.J Mol Microbiol Biotechnol,2007,12:241-248
    54 Du?kováM,Ferreira C,Lucas C,et al.Two glycerol uptake systems contribute to the high osmotolerance of Zygosaccharomyces rouxii.Mol Microbiol,2015,97:541-559
    55 Ji H,Lu X,Zong H,et al.Functional and expression studies of two novel STL1 genes of the osmotolerant and glycerol utilization yeast Candida glycerinogenes.J Gen Appl Microbiol,2018,64:121-126
    56 Liu X,Mortensen U H,Workman M.Expression and functional studies of genes involved in transport and metabolism of glycerol in Pachysolen tannophilus.Microb Cell Fact,2013,12:27
    57 Pérez-Torrado R,Oliveira B M,Zeman?íkováJ,et al.Alternative glycerol balance strategies among Saccharomyces species in response to winemaking stress.Front Microbiol,2016,7:435
    58 Lee J,Reiter W,Dohnal I,et al.MAPK Hog1 closes the S.cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators.Genes Dev,2013,27:2590-2601
    59 Beese-Sims S E,Pan S J,Lee J,et al.Mutants in the Candida glabrata glycerol channels are sensitized to cell wall stress.Eukaryotic Cell,2012,11:1512-1519
    60 Xu S,Zhou J,Liu L,et al.Arginine:A novel compatible solute to protect Candida glabrata against hyperosmotic stress.Process Biochem,2011,46:1230-1235
    61 Nishimura A,Kotani T,Sasano Y,et al.An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1:Oxidative stress-induced arginine synthesis and its physiological role.FEMS Yeast Res,2010,10:687-698
    62 Morita Y,Nakamori S,Takagi H.Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae.J Biosci Bioeng,2002,94:390-394
    63 Ji H,Lu X,Zong H,et al.γ-aminobutyric acid accumulation enhances the cell growth of Candida glycerinogenes under hyperosmotic conditions.J Gen Appl Microbiol,2018,64:84-89
    64 Coleman S T,Fang T K,Rovinsky S A,et al.Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae.J Biol Chem,2001,276:244-250
    65 Li Z,Yu J,Peng Y,et al.Metabolic pathways regulated byγ-aminobutyric acid(GABA)contributing to heat tolerance in creeping bentgrass(Agrostis stolonifera).Sci Rep,2016,6:30338
    66 Bach B,Meudec E,Lepoutre J P,et al.New insights into-aminobutyric acid catabolism:Evidence for-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae.Appl Environ Microbiol,2009,75:4231-4239
    67 Cao J,Barbosa J M,Singh N K,et al.GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production.Yeast,2013,30:129-144
    68 Liang Z,Liu D,Lu X,et al.Identification and characterization from Candida glycerinogenes of hexose transporters having high efficiency at high glucose concentrations.Appl Microbiol Biotechnol,2018,102:5557-5567
    69 Ding C S,Rao Z M,Zhuge B,et al.Analysis of CgGPD gene promoter from Candida glycerinogenes by fluorescent protein(in Chinese).Acta Microbiol Sin,2008,48:1013-1018[丁春生,饶志明,诸葛斌,等.利用荧光蛋白研究产油假丝酵母胞浆3-磷酸油脱氢酶基因CgGPD启动子.微生物学报,2008,48:1013-1018]
    70 Zhu J L,Zhuge B,Fang H Y,et al.New osmo-regulational promoters in the industrial yeast(in Chinese).Acta Microbiol Sin,2015,11:55[朱佳莉,诸葛斌,方慧英,等.新型渗透压调控的工业酵母启动子.微生物学报,2015,11:55]
    71 Zhang C,Zhuge B,Zhan X,et al.Cloning and characterization of a novel NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase gene from Candida glycerinogenes and use of its promoter.Yeast,2013,30:157-163
    72 Li Y,Shen W,Wang Z,et al.Isolation and sequence analysis of the geneURA3 encoding the orotidine-5′-phosphate decarboxylase from Candida glycerinogenes WL2002-5,an industrial glycerol producer.Yeast,2002,22:423-430
    73 Xu D.The Construction of An Expression Vector Using 18S rDNA As integration Site for the Host of Candida glycerinogenes WL2002-5(in Chinese).Dissertation for Master’s Degree.Southern Yangtes University,2014[徐丹.产油假丝酵母WL2002-5以18S rDNA为整合位点的表达体系的构建.硕士学位论文.江南大学,2014]
    74 Chen X Z,Rao Z M,Shen W,et al.A Transformation system for Candida glycerinogenes,basedon Zeocin resistance(in Chinese).Acta Laser Biol Sin,2008,17[陈献忠,饶志明,沈微,等.以Zeocin抗性基因为选择标记的Candida glycerinogenes遗传转化.激光生物学报,2008,17]
    75 Chen X,Fang H,Rao Z,et al.An efficient genetic transformation method for glycerol producer Candida glycerinogenes.Microbiol Res,2008,163:531-537
    76 Shen W,Wang Z X,Rao Z M,et al.A genetic transformation system based on trp1 complementation in Candida glycerinogenes.World JMicrobiol Biotechnol,2011,27:1005-1008
    77 Zhang C,Zong H,Zhuge B,et al.Production of xylitol from D-xylose by overexpression of xylose reductase in osmotolerant yeast Candida glycerinogenes WL2002-5.Appl Biochem Biotechnol,2002,176:1511-1527
    78 Ji H,Lu X,Zong H,et al.A synthetic hybrid promoter for D-xylonate production at low p H in the tolerant yeast Candida glycerinogenes.Bioengineered,2017,8:700-706

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700