用户名: 密码: 验证码:
水稻光合碳在植株-土壤系统中分配与稳定对施磷的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Allocation and Stabilization Responses of Rice Photosynthetic Carbon in the Plant-Soil System to Phosphorus Application
  • 作者:王莹莹 ; 肖谋良 ; 张昀 ; 袁红朝 ; 祝贞科 ; 葛体达 ; 吴金水 ; 张广才 ; 高晓丹
  • 英文作者:WANG Ying-ying;XIAO Mou-liang;ZHANG Yun;YUAN Hong-zhao;ZHU Zhen-ke;GE Ti-da;WU Jin-shui;ZHANG Guang-cai;GAO Xiao-dan;National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources,Key Laboratory of Arable Land Conservation and Improvement in Northeast China,Ministry of Agriculture,College of Land and Environment,Shenyang Agricultural University;Key Laboratory of Subtropical Agriculture Ecology,Institute of Subtropical Agriculture,Chinese Academy of Sciences;
  • 关键词:光合碳 ; 稻田 ; 施磷 ; ~(13)CO_2连续标记
  • 英文关键词:photosynthates;;paddy soil;;phosphorus fertilization;;~(13)C-CO_2 continuous labeling
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:沈阳农业大学土地与环境学院土肥资源高效利用国家工程实验室农业部东北耕地保育重点实验室;中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室;
  • 出版日期:2018-11-15 17:58
  • 出版单位:环境科学
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(41771334; 41671292);国家自然科学基金青年科学基金项目(41601230);; 公益性行业(农业)科研专项经费项目(201503118-10);; 博士后科学基金项目(2017M611265)
  • 语种:中文;
  • 页:439-446
  • 页数:8
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:S511;S154.4
摘要
为探究稻田土壤光合碳的输入及分配对施磷的响应特征,本研究选用籼性常规水稻品种(中早39),在两个施磷(0mg·kg~(-1)和80 mg·kg~(-1);分别记为P0和P80)条件下进行盆栽试验,同时采用~(13)CO_2连续标记技术量化光合碳在水稻-土壤系统中的分配.结果表明,施磷显著增加光合碳在水稻地上部的分配,降低其在根际土的分配(P <0. 05);施磷使拔节期水稻的光合碳含量增加了70%,根系干重降低了31%.与不施磷相比,施磷显著提高了水稻地上部全碳含量0. 31 g·pot~(-1)(P <0. 05),显著降低了水稻根冠比;施磷使进入非根际土壤微生物量的光合碳(~(13)C-MBC)显著增加了0. 03 mg·kg~(-1),但降低其在根际土壤的分配;光合碳在非根际土壤颗粒态有机碳(POC)和矿物结合态有机碳(MOC)的分配对施磷的响应不显著,但在根际土壤施磷处理显著降低了其在POC中的含量.因此,施磷增加了光合碳在水稻-土壤系统的分配,但降低了光合碳在土壤中的积累.本研究探讨施磷对水稻光合碳在水稻-土壤系统的分配及其稳定的影响,为缺磷土壤的合理施用磷肥及其对土壤有机碳积累的影响提供理论基础和数据支撑;对理解稻田土壤光合碳的传输与分配特征及其固碳潜力具有重要意义.
        This research studied the response of the input and allocation of photosynthetic carbon( C) to phosphorus( P) in paddy soils.Two treatments were conducted in this experiment: no P application( P0) and the application of 80 mg·kg~(-1) of P( P80). The rice cultivar was the indica Zhongzao 39. The~(13)C-CO_2 continuous labeling technique was used to identify the photosynthetic C distribution of the rice. The results showed that the application of P80 significantly increased the photosynthates allocation in the rice aboveground,but reduced their allocation in the rhizosphere soil( P < 0. 05). At the jointing stage,P80 application increased the photosynthetic C content of the rice by 70%,but the root dry weight decreased 31%. Compared with P0,the total C content of the aboveground rice was increased0. 31 g·pot~(-1) by P80. The ratio of rice roots to shoots decreased with the P80 treatment. Moreover,P80 application led to an increase in the photosynthetic microbial biomass in the non-rhizosphere soil C(~(13)C-MBC) of 0. 03 mg·kg~(-1),but still decreased its allocation in the rhizosphere soil. The allocation of photosynthetic C to the particulate organic matter fraction( POC) and mineral fraction( MOC) in the non-rhizosphere soil showed no significant differences between P0 and P80. Additionally,the P80 fertilization treatment significantly lowered the content of POC in the rhizosphere soil. In summary,P application increased the allocation of photosynthetic C in the soil-rice system,but reduced the accumulation of photosynthetic C in the soil. This research provided a theoretical basis and data supporting the rational application of P fertilizer,and was also of great significance as a study of the transportation and allocation of photosynthetic C and its sequestration potential response to the application of P to the rice soil.
引文
[1] Pan G X,Li L Q,Wu L S,et al. Storage and sequestration potential of topsoil organic carbon in China's paddy soils[J].Global Change Biology,2004,10(1):79-92.
    [2]陈春梅,谢祖彬,朱建国.大气CO2浓度升高对土壤碳库的影响[J].中国生态农业学报,2008,16(1):217-222.Chen C M,Xie Z B,Zhu J G. Effects of elevated atmospheric CO2concentration on soil carbon[J]. Chinese Journal of EcoAgriculture,2008,16(1):217-222.
    [3] Wu J. Carbon accumulation in paddy ecosystems in subtropical China:evidence from landscape studies[J]. European Journal of Soil Science,2011,62(1):29-34.
    [4]任逸文,肖谋良,袁红朝,等.水稻光合碳在植物-土壤系统中的分配及其对CO2升高和施氮的响应[J].应用生态学报,2018,29(5):1397-1404.Ren Y W,Xiao M L,Yuan H C,et al. Allocation of rice photosynthates in plant-soil system in response to elevated CO2and nitrogen fertilization[J]. Chinese Journal of Applied Ecology,2018,29(5):1397-1404.
    [5] Ge T D,Yuan H Z,Zhu H H, et al. Biological carbon assimilation and dynamics in a flooded rice-soil system[J]. Soil Biology and Biochemistry,2012,48(4):39-46.
    [6]陈珊,祝贞科,袁红朝,等.拔节期水稻光合碳输入的动态变化及其对施氮的响应:13C-CO2脉冲标记[J].环境科学,2018,39(1):331-338.Chen S, Zhu Z K, Yuan H Z, et al. Dynamics of rice photosynthesized carbon input and its response to nitrogen fertilization at the jointing stage:13C-CO2Pulse-labeling[J].Environmental Science,2018,39(1):331-338.
    [7] Cambardella C A,Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils[J]. Soil Science Society of America Journal,1993,57(4):1071-1076.
    [8] Watson J R, Parsons J W. Studies of soil organo-mineral franctions:I. Isolation by ultrasonic dispersion[J]. Journal of Soil Science,1974,25(1):1-8.
    [9]柏菁,李奕霏,刘守龙,等.添加磷素对低磷稻田根际土壤固碳自养微生物数量的影响[J].环境科学,2018,(12):1-12.Bai J,Li Y F,Liu S L,et al. Effect of phosphorus addition on the abundance of autotrophic CO2fixation microorganisms in the rhizospheric soil from a phosphorus limited paddy field[J].Environmental Science,2018,(12):1-12.
    [10]王婷婷,祝贞科,朱捍华,等.施氮和水分管理对光合碳在土壤-水稻系统间分配的量化研究[J].环境科学,2017,38(3):1227-1234.Wang T T,Zhu Z K,Zhu H H,et al. Input and distribution of photosynthesized carbon in soil-rice system affected by water management and nitrogen fertilization[J]. Environmental Science,2017,38(3):1227-1234.
    [11]刘玉槐,魏晓梦,魏亮,等.水稻根际和非根际土磷酸酶活性对碳、磷添加的响应[J].中国农业科学,2018,51(9):1653-1663.Liu Y H,Wei X M,Wei L,et al. Responses of extracellular enzymes to carbon and phosphorus additions in rice rhizosphere and bulk soil[J]. Scientia Agricultura Sinica,2018,51(9):1653-1663.
    [12] Pinheiro,érika Flávia Machado,et al. Tillage systems effects on soil carbon stock and physical fractions of soil organic matter[J].Agricultural Systems,2015,132:35-39.
    [13] Ge T,Chen X,Yuan H,et al. Microbial biomass,activity,and community structure in horticultural soils under conventional and organic management strategies[J]. European Journal of Soil Biology,2013,58:122-128.
    [14] Ge T D,Wu X H,Chen X J,et al. Microbial phototrophic fixation of atmospheric CO2in China subtropical upland and paddy soils[J]. Geochimica et Cosmochimica Acta,2013,113:70-78.
    [15] ChapinⅢF S,Bloom A J,Field C B,et al. Plant responses to multiple environmental factors:physiological ecology provides tools for studying how interacting environmental resources control plant growth[J]. Bioscience,1987,37(1):49-57.
    [16]张瑞,张贵龙,姬艳艳,等.不同施肥措施对土壤活性有机碳的影响[J].环境科学,2013,34(1):277-282.Zhang R,Zhang G L,Ji Y Y,et al. Effects of different fertilizer application on soil active organic carbon[J]. Environmental Science,2013,34(1):277-282.
    [17] Yang J,Kang Y,Sakurai K,et al. Fixation of carbon dioxide by chemoautotrophic bacteria in grassland soil under dark conditions[J]. Acta Agriculturae Scandinavica,Section B-Soil&Plant Science,2017,67(4):362-371.
    [18] Canarini A,Dijkstra F A. Dry-rewetting cycles regulate wheat carbon rhizodeposition,stabilization and nitrogen cycling[J].Soil Biology and Biochemistry,2015,81:195-203.
    [19]祝贞科,沈冰洁,葛体达,等.农田作物同化碳输入与周转的生物地球化学过程[J].生态学报,2016,36(19):5987-5997.Zhu Z K,Shen B J,Ge T D,et al. Biogeochemical processes underlying the input and turnover of crop assimilative carbon in farmland ecosystems[J]. Acta Ecologica Sinica, 2016, 36(19):5987-5997.
    [20] Mehra P,Pandey B K,Giri J. Comparative morphophysiological analyses and molecular profiling reveal pi-efficient strategies of a traditional rice genotype[J]. Frontiers in Plant Science,2016,6:1184.
    [21] Johnson D,Leake J R,Ostle N P,et al. In situ13C O2pulselabelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil[J].New Phytologist,2002,153(2):327-334.
    [22] Kuzyakov Y,Domanski G. Model for rhizodeposition and CO2efflux from planted soil and its validation by14C pulse labelling of ryegrass[J]. Plant and Soil,2002,239(1):87-102.
    [23] Ge T D,Liu C,Yuan H Z,et al. Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen[J]. Plant and Soil,2015,392(1-2):17-25.
    [24] Richardson A E,Barea J,Mc Neill A M,et al. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J]. Plant and Soil,2009,321(1-2):305-339.
    [25] Nuruzzaman M,Lambers H,Bolland M D A,et al. Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes[J]. Plant and Soil,2006,281(1-2):109-120.
    [26] Hafner S,Wiesenberg G L B,Stolnikova E,et al. Spatial distribution and turnover of root-derived carbon in alfalfa rhizosphere depending on top-and subsoil properties and mycorrhization[J]. Plant and Soil,2014,380(1-2):101-115.
    [27] Yin L M,Dijkstra F A,Wang P,et al. Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition[J]. New Phytologist,2018,218(3):1036-1048.
    [28]马欣,魏亮,唐美玲,等.长期不同施肥对稻田土壤有机碳矿化及激发效应的影响[J].环境科学,2018(12):1-12.Ma X,Wei L,Tang M L,et al. Effects of different long-term fertilization on organic carbon mineralization and priming effect of paddy soil[J]. Environmental Science,2018(12):1-12.
    [29]袁颖红,李辉信,黄欠如,等.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J].生态学报,2004,24(12):2961-2966.Yuan Y H,Li H X,Huang Q R,et al. Effects of different fertilization on soil organic carbon distribution and storage in micro-aggregates of red paddy topsoil[J]. Acta Ecologica Sinica,2004,24(12):2961-2966.
    [30]王玲莉,韩晓日,杨劲峰,等.长期施肥对棕壤有机碳组分的影响[J].植物营养与肥料学报,2008,14(1):79-83.Wang L L,Han X R,Yang J F,et al. Effect of long-term fertilization on organic carbon fractions in a brown soil[J]. Plant Nutrition and Fertilizer Science,2008,14(1):79-83.
    [31]刘骅,佟小刚,马兴旺,等.长期施肥下灰漠土矿物颗粒结合有机碳的含量及其演变特征[J].应用生态学报,2010,21(1):84-90.Liu H,Tong X G,Ma X W,et al. Content and evolution characteristics of organic carbon associated with particle-size fractions of grey desert soil under long-term fertilizaton[J].Chinese Journal of Applied Ecology,2010,21(1):84-90.
    [32] KastovskáE,Edwards K,Santruc kováH. Rhizodeposition flux of competitive versus conservative graminoid:contribution of exudates and root lysates as affected by N loading[J]. Plant and Soil,2017,412(1-2):331-344.
    [33] Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil:Concept&review[J]. Soil Biology and Biochemistry,2015,83:184-199.
    [34]佟小刚,徐明岗,张文菊,等.长期施肥对红壤和潮土颗粒有机碳含量与分布的影响[J].中国农业科学,2008,41(11):3664-3671.Tong X G,Xu M G,Zhang W J,et al. Influence of long-term fertilization on content and distribution of organic carbon in particle-size fractions of red soil and fluvo-aquic soil in China[J]. Scientia Agricultura Sinica,2008,41(11):3664-3671.
    [35]樊廷录,王淑英,周广业,等.长期施肥下黑垆土有机碳变化特征及碳库组分差异[J].中国农业科学,2013,46(2):300-309.Fan T L,Wang S Y,Zhou G Y,et al. Effects of long-term fertilizer application on soil organic carbon change and fraction in cumulic haplustoll of loess plateau in China[J]. Scientia Agricultura Sinica,2013,46(2):300-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700