用户名: 密码: 验证码:
南京地区污水厂、自来水厂及长江水域MCR-1和NDM-1携带菌耐药特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Antibiotic Resistance Profiles of MCR-1 and NDM-1 Hosting Bacteria in a Wastewater Treatment Plant,Drinking Water Treatment Plant and the Yangtze River in Nanjing
  • 作者:王若楠 ; 马奔 ; 王新宇 ; 张媛 ; 曹振华 ; 袁青彬
  • 英文作者:Wang Ruonan;Ma Ben;Wang Xinyu;Zhang Yuan;Cao Zhenhua;Yuan Qingbin;College of Environmental Science and Engineering,Nanjing Tech University;
  • 关键词:MCR-1 ; NDM-1 ; 污染特征 ; 耐药特征 ; 影响因素
  • 英文关键词:MCR-1;;NDM-1;;pollution characteristics;;antibiotic resistance characteristics;;influencing factors
  • 中文刊名:生态毒理学报
  • 英文刊名:Asian Journal of Ecotoxicology
  • 机构:南京工业大学环境科学与工程学院;
  • 出版日期:2019-04-15
  • 出版单位:生态毒理学报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金(NO.51608260);; 污染控制与资源化研究国家重点实验室开放基金(NO.PCRRF16029);; 国家大学生创新创业训练项目(NO.201710291066)
  • 语种:中文;
  • 页:143-155
  • 页数:13
  • CN:11-5470/X
  • ISSN:1673-5897
  • 分类号:X703;X172
摘要
为了研究以多粘菌素耐药基因(MCR-1)和新德里金属β-内酰胺酶-1基因(NDM-1)携带菌为代表的"超级细菌"在地表水中的环境行为,以长江南京段典型水域及邻近城市污水厂和自来水厂为研究对象,考察了MCR-1和NDM-1携带菌的耐药特性及其变化特征。结果发现,污水厂进水和生物处理单元2种细菌耐药能力均处于较高水平,随处理流程呈降低趋势,至消毒出水中不再被检出。长江中MCR-1携带菌耐粘菌素的半抑制浓度(EC50)较高,平均达37.89 mg·L-1,顺水流方向无显著降低。仅在下游朱家山河汇入口和长江大桥附近滨江公园检出较高耐药水平的NDM-1携带菌。2种细菌耐药水平受水体污染程度和人类活动影响较明显。自来水厂MCR-1携带菌数目较少,但其EC50平均可达32.75 mg·L~(-1),常规处理单元中未检出NDM-1携带菌。水处理工艺显著降低了细菌耐药水平,但排泥水中2种细菌均检出,且耐药水平相比进水显著提高。本研究可为评价水介质中超级抗性基因及其携带菌的环境风险提供参考。
        To study the fates of super antibiotic resistant bacteria in surface water, represented by mobilized colistin resistance gene(MCR-1) and New Delhi metallo-β-lactamase-1(NDM-1) hosting bacteria, the antibiotic resistance characteristics of the two classes of bacteria and their variation in the Yangtze River of Nanjing and nearby wastewater treatment plant(WWTP) and drinking water treatment plant(DWTP) were investigated. The results showed that the antibiotic resistance level of MCR-1 and NDM-1 hosting bacteria were both at high levels in the influent and biological treatment units of the WWTP. Then the antibiotic resistance level decreased along with thetreatment process and no MCR-1 and NDM-1 hosting bacteria could be detected in the effluent. In Yangtze River,the MCR-1-hosting bacteria showed tolerance to rather high colistin level, with the average 50% effective concentration(EC50) of 37.89 mg·L~(-1), and no significant decrease of the EC50 value was detected along with the flow direction. NDM-1 hosting bacteria were not detected in the upstream, while high EC50 value of NDM-1 hosting bacteria was detected in the Zhujiashan River estuary and the Yangtze River Bridge(Park area). The antibiotic resistance level of the two bacteria was obviously affected by the degrees of water pollution and human activities. By comparison, fewer MCR-1 hosting bacteria were detected in the DWTP, but the level of colistin resistance was not low,with an average EC50 of 32.75 mg·L-1. No NDM-1 hosting bacteria was detected in the conventional treatment units of the DWTP. Water treatment process significantly reduced the level of bacterial resistance, while both bacteria were detected in the sludge with significantly higher level of antibiotic resistance comparing to the influent. The study can provide implications for assessing the environmental risks of super antibiotic resistance genes in aquatic environments.
引文
[1] Anthony K. Antimicrobial resistance will kill 300 million by 2050 without action[EB/OL].(2018-05-12)[2018-05-27]. https://www.chemistryworld.com/news/antimicrobialresistance-will-kill-300-million-by-2050-without-action/8086. article
    [2] OberléK, Capdeville M J, Berthe T, et al. Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli:From medical center patients to a receiving environment[J]. Environmental Science&Technology, 2012, 46(3):1859-1868
    [3] Storteboom H, Arabi M, Davis J G, et al. Identification of antibiotic-resistance-gene molecular signatures suitable as tracers of pristine river, urban, and agricultural sources[J].Environmental Science&Technology, 2010, 44(6):1947-1953
    [4] Da Costa M P, Vaz-pires P, Bernardo F. Antimicrobial resistance in Enterococcus spp. isolated in inflow, effluent and sludge from municipal sewage water treatment plants[J]. Water Research, 2006, 40(8):1735-1740
    [5]江月,陈奕涵,何义亮.长江下游某水源型水库抗生素抗性基因污染研究[J].环境科学学报, 2018, 38(3):884-891Jiang Y, Chen Y H, He Y L. Study on antibiotic resistance genes contamination in a reservoir located at Yangtze River downstream[J]. Acta Scientiae Circumstantiae, 2018,38(3):884-891(in Chinese)
    [6] Parvathi A, Vijayan J, Murali G, et al. Comparative virulence genotyping and antimicrobial susceptibility profiling of environmental and clinical Salmonella enterica from Cochin, India[J]. Current Microbiology, 2011, 62(1):21-26
    [7] Liu Y Y, Wang Y, Walsh T R, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China:A microbiologicaland molecular biological study[J]. Lancet Infectious Diseases, 2016, 16(2):161-168
    [8] Ahammad Z S, Sreekrishnan T R, Hands C L, et al. Increased waterborne bla NDM-1 resistance gene abundances associated with seasonal human pilgrimages to the upper Ganges River[J]. Environmental Science&Technology, 2014, 48(5):3014-3020
    [9] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing:Twentyfirst informational supplement M100-S21[M]. Wayne,PA:Clinical and Laboratory Standards Institute(CLSI),2011:62-67
    [10] Yang F X, Mao D Q, Zhou H, et al. Propagation of New Delhi metallo-β-lactamase genes(bla NDM-1)from a wastewater treatment plant to its receiving river[J]. Environmental Science&Technology Letters, 2016, 3(4):138-143
    [11] Bontron S, Poirel L, Nordmann P. Real-time PCR for detection of plasmid-mediated polymyxin resistance(mcr-1)from cultured bacteria and stools[J]. Journal of Antimicrobial Chemotherapy, 2016, 71(8):2318-2320
    [12] Luo Y, Yang F, Mathieu J, et al. Proliferation of multidrug-resistant New Delhi metallo-β-lactamase genes in municipal wastewater treatment plants in Northern China[J]. Environmental Science&Technology Letters, 2014, 1(1):26-30
    [13] Delean A, Munson P J, Rodbard D. Simultaneous analysis of families of sigmoidal curves:Application to bioassay,radioligand assay, and physiological dose-response curves[J]. American Journal of Physiology, 1978, 235(2):97-102
    [14] Harnisz M, Korzeniewska E, Ciesielski S. tet genes as indicators of changes in the water environment:Relationships between culture-dependent and culture-independent approaches[J]. Science of the Total Environment, 2015,505:704-711
    [15] Wu N, Qiao M, Zhang B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Environmental Science&Technology, 2010, 44(18):6933-6939
    [16]uczkiewicz A, Jankowska K, Fudalaksiz·ek S, et al.Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant[J]. Water Research, 2010, 44(17):5089-5097
    [17] Kim S P, Park H K, Chandran K. Propensity of activated sludge to amplify or attenuate tetracycline resistance genes and tetracycline resistant bacteria:A mathematical modeling approach[J]. Chemosphere, 2010, 78(9):1071-1077
    [18] Yuan Q B, Guo M T, Wei W J, et al. Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater[J]. Environmental Science and Pollution Research International, 2016, 23(19):1-9
    [19] B9rjesson S, Mattsson A, Lindgren P E, et al. Genes encoding tetracycline resistance in a full-scale municipal wastewater treatment plant investigated during one year[J]. Journal of Water&Health, 2010, 8(2):247-256
    [20] Mckinney C W, Pruden A. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater[J]. Environmental Science&Technology, 2012, 46(24):13393-13400
    [21] Schmieder R, Edwards R. Insights into antibiotic resistance through metagenomic approaches[J]. Future Microbiology, 2012, 7(1):73-89
    [22] Zhang Y, Snow D D, Parker D, et al. Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures[J]. Environmental Science&Technology, 2013, 47(18):10206-10213
    [23] Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Science of the Total Environment, 2012, s421-422(3):173-183
    [24] Auerbach E A, Seyfried E E, Mcmahon K D. Tetracycline resistance genes in activated sludge wastewater treatment plants[J]. Water Research, 2007, 41(5):1143-1151
    [25] Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan[J]. Water Research,2011, 45(2):681-693
    [26]佟娟,魏源送.污水处理厂削减耐药菌与抗性基因的研究进展[J].环境科学学报, 2012, 32(11):2650-2659Tong J, Wei Y S. State-of-the-art removal of antibiotic resistance bacteria(ARB)and antibiotic resistance gene(ARG)in wastewater treatment plants(WWTPs)[J]. Acta Scientiae Circumstantiae, 2012, 32(11):2650-2659(in Chinese)
    [27] Di C A, Eckert E M, DUrso S, et al. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants[J]. Water Research, 2016, 94:208-214
    [28] Gao P, He S, Huang S, et al. Impacts of coexisting antibiotics, antibacterial residues, and heavy metals on the occurrence of erythromycin resistance genes in urban wastewater[J]. Applied Microbiology&Biotechnology,2015, 99(9):3971-3980
    [29] Kim S, Jensen J N, Aga D S, et al. Fate of tetracycline re-sistant bacteria as a function of activated sludge process organic loading and growth rate[J]. Water Science&Technology, 2007, 55(1-2):291-297
    [30] Oliveira A J F C D, Pinhata J M W. Antimicrobial resistance and species composition of Enterococcus spp. isolated from waters and sands of marine recreational beaches in Southeastern Brazil[J]. Water Research, 2008, 42(8):2242-2250
    [31] Liu C, Gao N, Yan M, et al. Study on mechanism similarities and differences of bacteria removal in raw water by two types of coagulant[J]. Journal of Tongji University,2007, 35(3):361-365
    [32] Nordmann P, Poirel L. Strategies for identification of carbapenemase-producing Enterobacteriaceae[J]. Journal of Antimicrobial Chemotherapy, 2013, 68(3):487-489
    [33] Hu Y, Xi Y, Jing L, et al. The bacterial mobile resistome transfer network connecting the animal and human microbiomes[J]. Applied&Environmental Microbiology, 2016,82(22):6672-6681
    [34] Guo X, Li J, Yang F, et al. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China[J]. Science of the Total Environment, 2014, 493:626-631
    [35]张明美.污水处理系统中抗生素抗性基因污染研究[D].杭州:浙江大学, 2013:32-36Zhang M M. The pollution of antibiotic resistance genes in wastewater treatment systems[D]. Hangzhou:Zhejiang University, 2013:32-36(in Chinese)
    [36] Allen H K, Donato J, Huimi W H, et al. Call of the wild:Antibiotic resistance genes in natural environments[J].Nature Reviews Microbiology, 2010, 8(4):251-259
    [37] Sekyere J O, Govinden U, Bester L A, et al. Colistin and tigecycline resistance in carbapenemase-producing Gramnegative bacteria:Emerging resistance mechanisms and detection methods[J]. Journal of Applied Microbiology,2016, 121(3):601-617
    [38] Shi P, Jia S, Zhang X X, et al. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water[J]. Water Research, 2013, 47(1):111-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700