用户名: 密码: 验证码:
低温等离子体协同催化技术降解VOCs现状
详细信息    查看全文 | 推荐本文 |
  • 作者:张硕 ; 梁旭 ; 于欣扬 ; 李家仁 ; 齐蕴博 ; 周伟 ; 沈欣军
  • 关键词:挥发性有机物 ; 低温等离子体 ; 催化剂
  • 英文关键词:volatile organic compounds;;non-thermal plasma;;catalysts
  • 中文刊名:环境保护与循环经济
  • 英文刊名:Environmental Protection and Circular Economy
  • 机构:沈阳工业大学理学院;
  • 出版日期:2019-02-15
  • 出版单位:环境保护与循环经济
  • 年:2019
  • 期:02
  • 基金:辽宁省科学事业公益研究基金(GY-2017-0013);; 沈阳市科技计划项目(17-231-1-19)
  • 语种:中文;
  • 页:26-30+74
  • 页数:6
  • CN:21-1556/X
  • ISSN:1674-1021
  • 分类号:X701
摘要
VOCs不仅直接对人体产生危害,而且在大气中参与光化学反应引发雾霾和其他污染天气。近年来,低温等离子体技术因其在室温下具有反应速率快、高效性受到广泛关注。介绍了低温等离子体的定义、分类、工作机理等方面,并着重阐述了几种影响低温等离子体降解VOCs的因素。现阶段研究表明,反应器模块、电源参数、输送气体、臭氧浓度、湿度及污染物浓度等因素在低温等离子体技术及低温等离子体协同其他技术降解VOCs时起到了关键性作用。
        Volatile Organic Compounds(VOCs)is not only directly harmful to human health,but also involved in photochemical reactions in the atmosphere,which causing smog and other polluted weather. Recently,it has been found that low-temperature plasma technology has attracted widespread attention due to its rapid reaction rate and high efficiency at room temperature. In this paper,introduces the definition,classification,working mechanism and other aspects of non-thermal plasma,and focuses on several factors that affect non-thermal plasma degradation of VOCs. Researches shown that factors such as reactor modules,power supply parameters,transport gas,ozone concentration,humidity,and contaminant concentration play a key role in non-thermal plasma technology and non-thermal plasma combined with other technologies for the degradation of VOCs.
引文
[1]Ramaraju B, Karuppiah J, Linga E R,et al. Removal of mixture of VOCs by nonthermal plasma[J]. Composite Interfaces,2012,19(3-4):271-277.
    [2]Jiang N,Qin C,Guo L J,et al. Post plasma-catalysis of low concentration VOC over alumina-supported silver catalysts in a surface/packed-bed hybrid discharge reactor[J].Water Air and Soil Pollution,2017,228(3):113.
    [3]Shi Y,Shao Z H,Shou TY,et al. Abatment of gaseous xylene using double dielectric barrier discharge plasma with in situ UV light:operating parameters and byproduct analysis[J]. Plasma Chemistry and Plasma Processing,2016,36(6):1501-1515.
    [4]Kamaleddin Abedi,Farshid G S,Babak Jaleh,et al. Decom position of chlorinated volatile organic compounds(CVOCs)using NTP coupled with TiO2/GAC,ZnO/GAC,and TiO2-ZnO/GAC in a plasma-assisted catalysis system[J]. Journal of Electrostatics,2015(73):80-88.
    [5]陶有胜.“三苯”废气治理技术[J].环境保护,1999(8):20-21.
    [6]Ye Z P,Wang C X,Shao Z H,et al. A novel dielectric barrier discharge reactor with photocatalytic electrode based on sintered metal fibers for abatement of xylene[J]. Journal of Hazardous Materials,2012,241(4):216-223.
    [7]Sun J,Wu F K,Hu B,et al. VOC characteristics,emissions and contributions to SOA formation during hazy episodes[J]. Atmospheric Environment,2016(141):560-570.
    [8]Li Y Z,Fan Z Y,Shi J W,et al. Removal of volatile organic compounds at room temperature using dielectric barrier discharge and plasma-catalysis[J]. Plasma Chemistry and Plasma Processing,2014,34(4):801-810.
    [9]张靖,邵敏,苏芳.北京市大气中挥发性有机物的组成特征[J].环境科学研究,2004(5):1-5.
    [10]Li W B,Wang J X,Gong H,Catalytic combustion of VOCs on non-noble metal catalysts,Catalysis Today,2009(148):81-87.
    [11]肖锦堂.催化氧化控制挥发性有机化合物(VOC)的排放[J].石油与天然气化工,1993(2):134.
    [12]王达望.新型大气压放电等离子体发生器及其在甲烷耦联方面的应用研究[D].大连:大连理工大学,2006.
    [13]竹涛.低温等离子体技术处理工业源VOCs[M].北京:冶金工业出版社,2017.
    [14]梁文俊,李晶欣.低温等离子体大气污染控制技术及应用[M].北京:化学工业出版社,2016.
    [15]薄拯.滑动弧放电等离子体处理挥发性有机化合物基础研究[D].杭州:浙江大学,2008.
    [16]Jiang N,Hu J,Li J,et al. Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas[J]. Applied CatalysisB Environment,2016(184):355-363.
    [17]Ondarts M,Hajji W,Outin J,et al. Non-Thermal Plasma for indoor air treatment:Toluene degradation in a corona discharge atppbv levels[J]. Chemical Engineering Research Design,2017(118):194-205.
    [18]左莉,侯立安.介质阻挡放电与脉冲电晕放电净化气态污染物的试验研究[J].洁净与空调技术,2003(3):43-45,19.
    [19]Zheng C,Zhu X,Gao X,et al. Experimental study of acetone removal by packed-beddielectric barrier discharge reactor[J]. Journal of Industrial Engineering Chemistry,2014,20(5):2761-2768.
    [20]戴绍龙.板式介质阻挡放电协同催化降解甲苯的实验研究[D].杭州:浙江大学,2015.
    [21]Sato S.,Hnsel K.,Hayashi H.,et al. Honeycomb discharge for diesel exhaust cleaning[J]. Journal of Electrostatics,2009,67(2-3):77-83.
    [22]Liu Y N,Braci L,Cavadias S,et al. Post-discharge treatment of air effluents polluted by butyl-mercaptan:the role of nitrate radical[J]. Jour nal of Physics D:Applied Physic,2011,44(9):095202.23
    [23]Zhang H B,Li K,Sun T H,et al. The removal of styrene using a dielectric barrier discharge(DBD)reactor and the analysis of the by-products and intermediates[J].Research on Chemical Intermediates,2013(39):1021-1035.
    [24]Rama Raju B,Linga Reddy E,Karuppiah J,et al. Catalytic non-thermal plasma reactor for the decomposi tion of a mixture of volatile organic compounds[J]. Journal of Chemical Science,2013,125(3):673-678.
    [25]魏周好胜.等离子体协同吸附催化净化喷漆废气的研究[D].淮南:安徽理工大学,2017.
    [26]Karuppiah J,Reddy E,Sivachacdiran L,et al. Nonthermal plasma assisted photocatalytic oxidation of di lute benzene[J]. Journal of Chemical Science,2012,124(4):841-845.
    [27]柳赟.介质阻挡放电低温等离子体脱除NOX的研究[D].北京:华北电力大学,2011.
    [28]叶菱玲.介质阻挡放电结合锰催化剂降解甲苯研究[D].杭州:浙江大学,2013.
    [29]吴军良. Mn/Ni/Cr基催化剂活性对低温等离子体催化氧化甲苯性能的影响[D].广州:华南理工大学,2014.
    [30]Subrahmanyam C,Magureanu M,Renken A,et al. Catalytic abatement of volatile organic compounds as sisted by nonthermal plasma:Part 1. A novel dielectric barrierdischarge reactor containing catalytic electrode[J]. Applied Catalysis B:Environmental,2006(65):3603-3608.
    [31]Schiavona M,Schorlinb M,Torrettac V,et al. Nonthermal plasma assisting the biofiltration of volatile organic compounds[J]. Journal of Cleaner Production,2017(148):498-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700